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Outline

ExaScale computing 
node efficiency, scalability, and algorithmic complexity 

TerraNeo 
HHG 
HyTeG 

waLBerla 
Lattice Boltzmann 
Rigid Body Dynamics 

Conclusions
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Part I: Extreme Scale Computing
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What is it about
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What is ExaScale possibly good for?
ExaScale: 1018 FLOPS  
(floating point operations per 
second)  
When we have 

1000 
x 1000 
x 1000 particles (or pores) 
each resolved by 1000 cells 

then we still can still execute 
1 Mflop per each cell 

1 MFLPOS = 106 FLOPS = the 
performance of PC in 1990

5Performance Engineering   -    Uli Rüde

Simulation performed with in-house 
multi-physics framework waLBerla/PE

Preclik, T. & UR (2015). Ultrascale simulations of non-
smooth granular dynamics; Computational Particle 

Mechanics, DOI: 10.1007/s40571-015-0047-6



Performance Engineering   —  Uli Rüde

1018 FLOPS …
At clock rates of 1 Ghz a single stream of operands will 
produce results at 109/sec 

degree of concurrency= 109 

This will be achieved hierarchically 
104 nodes 
103 cores/node 
102 instructions on the fly/core (vectorization, pipelining, …) 

We must use them all! 

Energy: 1nJ/Flop  
1 GW for Exascale  

Resilience: MTBF of 100 years per cell phone (= 10 Gflop) 
108 cell phones: MTBF for Exascale = 30 sec

6



Energy consumption of floating point operations

Clock rates of 2-3 GHz 
correspond to cycle 
times of 0.3-0.5 nsec.

7Algorithmic energy efficiency       -         Uli Rüde

Chapter 3
Test Systems and Tools

This section elaborates the description and the characteristics of di↵erent test clusters and tools

available at RRZE high performance computing centre to study their power consumption and

the performance behaviour under a wide range of workloads. The command “Likwid-topology

-g” delivers the graphical output of machines topology. Intel introduced the “Running Average

Power Limit (RAPL)” energy sensors with the Sandy Brigde micro-architecture for measuring

energy consumption of short code paths and now it is available in almost all recent Intel CPUs

[17]. The Intel “Tick/Tock” model [18] discusses every micro-architectural change with a die

shrink of the process technology as shown in Figure 3.1.

32 nm Processor Technology 22 nm Processor Technology

Westmere

New Intel

Processor

Ivy Bridge

3rd generation

New Intel

Processor

Sandy Bridge

2nd generation

New Intel

Microarchitecture

Haswell

4th generation

New Intel

Microarchitecture

TICK TICKTOCK TOCK

-- =)

Figure 3.1.: Intel tick tock model towards Intel’s next generations

3.1. “phinally” Testsystem

The “phinally” test system has a dual-socket 8 cores Intel Sandy Bridge EP processor with 16

logical cores per socket through hyper-threading (see Fig. 3.2). It operates at 2.7 GHz base

clock speed and features Intel turbo mode for increased performance on an as-needed basis.

Sandy Bridge is the codename for micro-architecture based on the 32 nm manufacturing process

developed by Intel to replace Westmere micro-architecture. Due to Advanced Vector Extensions

(AVX) 256 bits instruction set with wider vectors, a full socket of phinally system has overall

theoretical peak performance Ppeak of 172.8 GFlops/s and 345.6 GFlops/s for double and single

9

based on: Ayesha Afzal: The Cost of Computation: Metrics and Models for Modern 
Multicore-based Systems in Scientific Computing, Master Thesis, FAU Erlangen, 2015 

8.3. Microscopic performance, power and/or energy models

The concern is to measure the number of joules for a particular byte transfer and during this

transfer time the whole chip consumes baseline energy E

0

which is burnt anyway even when

processor is idle and waits for the data transfer. The baseline energy E

0

will be di↵erent for

benchmarks having di↵erent runtime. Thus, a correction is applied by taking out this baseline

energy and only considering the dynamic part of the energy consumption.

Table 8.2.: Single core of dynamic energy cost for one flop (tread addition and multiplication on the

same footing) and for one byte transfer(load/store) with baseline power W0 = 15.9 W on

“phinally” system

Metrics Energy cost

"flop "

L1�REG
byte "

L2�L1
byte "

L3�L2
byte "

MEM�L3
byte

Flop only 830 pJ/F 0 0 0 0

Load only 0 227 pJ/B 314 pJ/B 256 pJ/B 1880 pJ/B

Store only 0 377 pJ/B 300 pJ/B 340 pJ/B 2977 pJ/B

Validation

The energy consumption can be predicted for a variety of tasks with the multiple operations

while knowing the microscopic level parameters (i.e., the energy cost of a single flop and a

byte transfer). For validation of this hypothesis, a real benchmark like 2D jacobi was chosen

which have a lot of data transfer with few flops so the dominant energy contribution is the data

movement. A comparison of measurements with the analytically predicted energy consumption

was done by putting together the knowledge about the data transfer cost, the flop cost, the

ECM model and the layer condition in energy model. For Jacobi stencil code, three streams

are needed to transfer when the layer condition is satisfied. Whereas, when layer condition is

violated, so there are more data transfers (five streams) across expensive data paths and the

code takes longer time which results in large energy cost.

Table 8.3.: Single core energy cost for one flop and energy cost for one byte transfer with baseline power

W0 = 15.9 W on “phinally” system

Metrics Copy (AVX) Jacobi (lcL3) Jacobi (lcL2)

(9 it * 1 GB) (100 it *8k *8k) (100 it *8k *8k with blocking)

Cycles per cache line 30.73 42.8 31.13

Memory Data volume (Byte) 9.66E+9 1.54E+11 1.54E+11

E

0

[pJ/B] 1414 1308 949

Calculated Total energy [J] 46 681 649

Measured Total energy [J] 45 651 638

The table 8.3 shows that how far the predicted values coincide with the measurements for both

same and di↵erent number of cache line transfers through memory hierarchy. We observed that

the single-core energy consumption of streaming kernels has a large baseline energy contribution

into total energy compare to multiple cores. However, for multi-cores, the total energy becomes

increasingly much more dominated by the dynamic power (which our power model also predicts).

67

8 core Sandy Bridge System - measured through systematic benchmarking 
see also Georg Hager’s talk at PACO 2015 

Best values on Green 500 currently convert to 0.1 nJ/Flop: 
         equivalent to 100 MW for ExaFlops performance



The first performance question:
What is the minimal cost of solving a PDE?  
(such as Poisson’s or Stokes’ equation in 3D) 

asymptotic results of the form 
 

        Cost ≦ C Np     (Flops?)  

with unspecified constant C are 
inadequate to predict performance 

The key goal of numerical analysis: 
             relate accuracy and cost! 

How do we quantify true cost?  
(i.e. resources needed) 

Number of flops? 
Memory consumption? 
Memory bandwidth? (aggregated?) 
Communication bandwidth? 
Communication latency? 
Power consumption?

8Performance Engineering   -    Uli Rüde



How do we predict cost?
What is the cost of solving the discrete Poisson equation? 

C’mon: it’s the mother of all PDE! 
Yep, there are O(N) algorithms: 
wavelet, fast multipole, multigrid, … 
but what is the best constant published? 

for Poisson 2D, second order: 
#Flops = 30 N          (Stüben, 1982) 

Intel Haswell CPU: 1030.4 GFlops single precision performance 
N=106 
expected time to solution: 3*10-5 sec (microseconds!) 

standard computational practice in 2017 misses this by 
many orders of magnitude! 
why do we have this enormous gap between theory and practice?  
no, it cannot be explained by „cache effects“ alone. 
This talk tries to contribute to the failure analysis.

9Performance Engineering   -    Uli Rüde



What is the largest system that we can solve today? 

and now, 13 years later? 
we have 400 TByte main memory = 4*1014 Bytes =  
5 vectors each with N=1013 double precision elements 
matrix-free implementation necessary 

even with a sparse matrix format, storing a matrix of 
dimension N=1013 is not possible 

Which algorithm? 
multigrid 
Cost = C*N 
C „moderate“, e.g. C=100. 

does it parallelize well on that scale? 
should we worry since ! = O(N2/3)?

10Performance Engineering   -    Uli Rüde

Bergen, B, Hülsemann, F, UR (2005): Is 1.7· 1010 unknowns the largest finite 
element system that can be solved today? Proceedings of SC’05.
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Energy per FLOP: 1nJ

Computer Generation gigascale: 109 terascale: 1012 petascale: 1015 exascale: 1018

problem size: DoF=N 106 109 1012 1015

Direct method: 1*N2 0.278 Wh 278 kWh 278 GWh 278 PWh

Krylov method: 100*N1.33 10 Ws 28 Wh 278 kWh 2.77 GWh

Full Multigrid: 200 N 0.2 Ws 0.056 Wh 56 Wh 56 kWh

TerraNeo prototype 
(est. for Juqueen) 0.13 Wh 30 Wh 27 kWh ?

Algorithms Matter!
Solution of Laplace equation 
in 3D wit N=n3 unknowns 
Direct methods: 

banded: ~n7 = N2.33 
nested dissection: ~n6 = N2 

Iterative Methods: 
Jacobi: ~50 n5 = 50 N1.66 

CG: ~100 n4 = 100 N1.33 

Full Multigrid: ~200 n3= 200 N



Part II: Hierarchical Hybrid Grids

12Performance Engineering   -    Uli Rüde

TERRA NEO

TERRA 



Example: Earth Mantle Convection

driving force for plate tectonics 
mountain building and earthquakes 

13Performance Engineering   -    Uli Rüde

mantle has 1012 km3

inversion and UQ blow up cost

Why Exascale?

Why TerraNeo?

Why Mantle Convection?

ultra-scalable and fast

sustainable framework

Challenges

computer sciences: software design for future exascale systems 

mathematics: HPC performance oriented metrics

geophysics: model complexity and uncertainty

bridging disciplines: integrated co-design



Meshing of the Mantle with Tets

14Simulation of Earth Mantle Convection    -    Uli Rüde

TERRA NEO

TERRA 



HHG: A modern mesh-free architecture for FE

Structured refinement of an unstructured base mesh 
Geometrical Hierarchy: Volume, Face, Edge, Vertex 

15Performance Engineering   -    Uli Rüde



HHG Solver for Stokes System 
Motivated by Earth Mantle convection problem

16Performance Engineering   -    Uli Rüde

Scale up to ~1013 nodes/ DOFs 
⇒ resolve the whole Earth Mantle globally 
with 1km resolution

Solution of the Stokes equations

Boussinesq model for mantle convection problems

derived from the equations for balance of forces, conservation of
mass and energy:

�r · (2⌘✏(u)) +rp = ⇢(T )g,

r · u = 0,

@T

@t
+ u ·rT �r · (rT ) = �.

u velocity
p dynamic pressure
T temperature
⌫ viscosity of the material
✏(u) = 1

2

(ru+ (ru)T ) strain rate tensor
⇢ density
, �, g thermal conductivity,

heat sources, gravity vector

Gmeiner, Waluga, Stengel, Wohlmuth, UR: Performance and Scalability 
of Hierarchical Hybrid Multigrid Solvers for Stokes Systems, SISC, 
2015.



Stationary Flow Field

17Algorithmic energy efficiency       -         Uli Rüde
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Exploring the Limits …
typically appear in simulations for molecules, quantum mechanics, or geophysics. The initial mesh

T�2

consists of 240 tetrahedrons for the case of 5 nodes and 80 threads. The number of degrees of

freedoms on the coarse grid T
0

grows from 9.0 · 103 to 4.1 · 107 by the weak scaling. We consider

the Stokes system with the Laplace-operator formulation. The relative accuracies for coarse grid

solver (PMINRES and CG algorithm) are set to 10�3 and 10�4, respectively. All other parameters

for the solver remain as previously described.

nodes threads DoFs iter time time w.c.g. time c.g. in %

5 80 2.7 · 109 10 685.88 678.77 1.04

40 640 2.1 · 1010 10 703.69 686.24 2.48

320 5 120 1.2 · 1011 10 741.86 709.88 4.31

2 560 40 960 1.7 · 1012 9 720.24 671.63 6.75

20 480 327 680 1.1 · 1013 9 776.09 681.91 12.14

Table 10: Weak scaling results with and without coarse grid for the spherical shell geometry.

Numerical results with up to 1013 degrees of freedom are presented in Tab. 10, where we observe

robustness with respect to the problem size and excellent scalability. Beside the time-to-solution

(time) we also present the time excluding the time necessary for the coarse grid (time w.c.g.) and

the total amount in % that is needed to solve the coarse grid. For this particular setup, this

fraction does not exceed 12%. Due to 8 refinement levels, instead of 7 previously, and the reduction

of threads per node from 32 to 16, longer computation times (time-to-solution) are expected,

compared to the results in Sec. 4.3. In order to evaluate the performance, we compute the factor

t nc n
�1, where t denotes the time-to-solution (including the coarse grid), nc the number of used

threads, and n the degrees of freedom. This factor is a measure for the compute time per degree of

freedom, weighted with the number of threads, under the assumption of perfect scalability. For

1.1 · 1013 DoFs, this factor takes the value of approx. 2.3 · 10�5 and for the case of 2.2 · 1012 DoFs

on the unit cube (Tab. 5) approx. 6.0 · 10�5, which is of the same order. Thus, in both scaling

experiments the time-to-solution for one DoF is comparable. The reason why the ratio is even

smaller for the extreme case of 1.1 · 1013 DoFs is the deeper multilevel hierarchy. Recall also that

the computational domain is di↵erent in both cases.

The computation of 1013 degrees of freedom is close to the limits that are given by the shared

memory of each node. By (8), we obtain a theoretical total memory consumption of 274.22 TB,

and on one node of 14.72 GB. Though 16 GB of shared memory per node is available, we employ

one further optimization step and do not allocate the right-hand side on the finest grid level. The

right-hand side vector is replaced by an assembly on-the-fly, i.e., the right-hand side values are

evaluated and integrated locally when needed. By applying this on-the-fly assembly, the theoretical

18

Multigrid with Uzawa smoother 
Optimized for minimal memory consumption 

1013 Unknowns correspond to 80 TByte for the solution vector 
Juqueen has 450 TByte Memory 
matrix free implementation essential

18Performance Engineering   -    Uli Rüde

Gmeiner B., Huber M, John L, UR, Wohlmuth, B: A quantitative performance study for Stokes solvers at 
the extreme scale, Journal of Computational Science, 2016.

is this the largest FE system solved to date?



Towards systematic 
performance engineering: 
  
Parallel Textbook Efficiency 
as guiding design principle
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Brandt, A. (1998). Barriers to achieving textbook multigrid efficiency (TME) in CFD. 
Thomas, J. L., Diskin, B., & Brandt, A. (2003). Textbook Multigrid Efficiency for Fluid Simulations*. 
Annual review of fluid mechanics, 35(1), 317-340. 
Gmeiner, UR, Stengel, Waluga, Wohlmuth: Towards Textbook Efficiency for Parallel Multigrid, 
Journal of Numerical Mathematics: Theory, Methods and Applications, 2015 
Gmeiner, Huber, John, UR, Wohlmuth, A quantitative performance study for Stokes solvers at the 
extreme scale, Journal of Computational Science, Volume 17, 2016, Pages 509-521
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Figure 5: ECM model for the 15-point stencil with variable coefficients (left) and constant coefficients

(right) on SNB core. An arrow indicates a 64 Byte cache line transfer. Run-times represent 8 elementary

updates.

Since the performance predictions obtained as above by the roofline model are un-
satisfactory, we must proceed to develop a more accurate analysis. To this end, a more
careful inspection of the code reveals the following: The vectorization report by the Intel
compiler confirms that the innermost loop of the stencil code is optimally executed. How-
ever, the roofline model in its simplest setting does not account for a possible non-optimal
instruction code scheduling. Also the run-time contributions of transfers inside the cache
hierarchy are not taken into account. To include these effects, we employ the Execution-
Cache-Memory (ECM) model of [22, 33], and we refer to [18] for a thorough description
of the modeling process for this kernel.

An overview of the input parameters to the model is displayed in Figure 5. Different
assumptions which operations can be overlapped lead to a corridor of performance pre-
dictions of 159� 189MLups/s for a single core. The obtained measurements are within
this range, indicating that the micro architecture is capable of overlapping at least some
of the operations (cf. Figure 6). We also note that the (CC) kernel cannot saturate the
maximal memory bandwidth of 42 GB/s with 8 cores. A comparison of the different run-
time contributions shows that the single-core performance is in fact dominated by code
execution and that — in contrast to the initial analysis — instruction throughput and not
memory bandwidth is the critical resource. The poor predictive results that were obtained
with the simple model are mainly caused by an over-optimistic assumption for the peak
performance value that was based on FLOPS throughput alone. For the (CC) smoother,
additional instruction overhead has to be considered. We remark that this is caused by the
red-black pattern of updates that requires a high number of logistic machine instructions
before vectorized operations can be used. In such cases, a thorough understanding of the
performance depends on a careful code analysis. As demonstrated, this leads to a realistic
prediction interval for the single-core performance.

We can additionally conclude that code optimization strategies that try to speed up the
execution of a WU by reducing the memory bandwidth requirements, in particular cache

ECM Analysis of  multigrid smoother for 
variable/constant coefficient performance



Textbook Multigrid Efficiency (TME)
„Textbook multigrid efficiency means solving a 
discrete PDE problem with a computational effort 
that is only a small (less than 10) multiple of the 
operation count associated with the discretized 
equations itself.“  [Brandt, 98]

work unit (WU) = single elementary relaxation 
classical algorithmic TME-factor: 

ops for solution/ ops for work unit  
Here we introduce a new  
              parallel TME-factor: 

algorithmic efficiency 
scalability & node efficiency
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ParTME paradigm for 
parallel performance analysis

Analyse cost of an elementary relaxation to define 
cost of work unit (WU) depending on idealized HW 

micro-kernel benchmarks  
measure aggregate performance 

Measure parallel solver performance 
Compute ParTME factor as quotient 
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Uµsm

T (N,U)

EParTME(N, U) =
T (N, U)

TWU(N, U)
= T (N,U)

Uµsm

N

TWU(N, U) =
N

Uµsm

Parallel TME
# of elementary relaxation steps on single core/sec 

# cores 

aggregate peak relaxation performance

22Algorithmic energy efficiency       -         Uli Rüde

µsm

U

time to solution for N unknowns on U cores

idealized time for a work unit

Parallel textbook efficiency factor

combines algorithmic and implementation efficiency.



TME Efficiency Analysis: RB-GS Smoother
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		for (int i=1; i < (tsize-j-k-1); i=i+2) {
    u[mp_mr+i] = c[0] * (
     -c[1] *u[mp_mr+i+1] - c[2] *u[mp_tr+i-1] -
      c[3] *u[mp_tr+i]   - c[4] *u[tp_br+i]   -
      c[5] *u[tp_br+i+1] - c[6] *u[tp_mr+i-1] -
      c[7] *u[tp_mr+i]   - c[8] *u[bp_mr+i]   -
      c[9] *u[bp_mr+i+1] - c[10]*u[bp_tr+i-1] -
      c[11]*u[bp_tr+i]   - c[12]*u[mp_br+i]   -
      c[13]*u[mp_br+i+1] - c[14]*u[mp_mr+i-1] +
      f[mp_mr+i] ); 

This loop should be executed on single SuperMuc core at 
720 M updates/sec (in theory - peak performance) 
        = 176 M updates/sec (in practice - memory access 
bottleneck; RB-ordering prohibits vector loads) 

Thus whole SuperMuc should perform 
             = 147456*176M ≈ 26 T (updates/sec)

ĺ tp_br

ĺ mp_br

tp_mr ĺ 

mp_tr ĺ 

mp_mr ĺ 

bp_tr ĺ 

bp_mr ĺ 

µsm

Uµsm



Execution-Cache-Memory Model (ECM)  

ECM model for the 
15-point stencil on 
SNB core. 

Arrow indicates a 
64 Byte cache line 
transfer. 

Run-times 
represent 8 
elementary 
updates.
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Hager et al. Exploring performance and power properties of modern multi-core chips via simple machine 
models. Concurrency and Computation: Practice and Experience, 2013.16 Björn Gmeiner
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Figure 5: ECM model for the 15-point stencil with variable coefficients (left) and constant coefficients

(right) on SNB core. An arrow indicates a 64 Byte cache line transfer. Run-times represent 8 elementary

updates.

Since the performance predictions obtained as above by the roofline model are un-
satisfactory, we must proceed to develop a more accurate analysis. To this end, a more
careful inspection of the code reveals the following: The vectorization report by the Intel
compiler confirms that the innermost loop of the stencil code is optimally executed. How-
ever, the roofline model in its simplest setting does not account for a possible non-optimal
instruction code scheduling. Also the run-time contributions of transfers inside the cache
hierarchy are not taken into account. To include these effects, we employ the Execution-
Cache-Memory (ECM) model of [22, 33], and we refer to [18] for a thorough description
of the modeling process for this kernel.

An overview of the input parameters to the model is displayed in Figure 5. Different
assumptions which operations can be overlapped lead to a corridor of performance pre-
dictions of 159� 189MLups/s for a single core. The obtained measurements are within
this range, indicating that the micro architecture is capable of overlapping at least some
of the operations (cf. Figure 6). We also note that the (CC) kernel cannot saturate the
maximal memory bandwidth of 42 GB/s with 8 cores. A comparison of the different run-
time contributions shows that the single-core performance is in fact dominated by code
execution and that — in contrast to the initial analysis — instruction throughput and not
memory bandwidth is the critical resource. The poor predictive results that were obtained
with the simple model are mainly caused by an over-optimistic assumption for the peak
performance value that was based on FLOPS throughput alone. For the (CC) smoother,
additional instruction overhead has to be considered. We remark that this is caused by the
red-black pattern of updates that requires a high number of logistic machine instructions
before vectorized operations can be used. In such cases, a thorough understanding of the
performance depends on a careful code analysis. As demonstrated, this leads to a realistic
prediction interval for the single-core performance.

We can additionally conclude that code optimization strategies that try to speed up the
execution of a WU by reducing the memory bandwidth requirements, in particular cache

Variable coefficients Constant coefficients



ECM: single-chip prediction vs. measurement  

Sandy Bridge single-chip performance scaling of the stencil smoothers 
on 2563 grid points. Measured data and ECM prediction ranges shown.
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Figure 6: SNB single-chip performance scaling of the stencil smoothers on 2563
grid points. Measured

data and ECM prediction ranges are shown.

blocking strategies, would fail. The above discussion demonstrates that —different form
conventional wisdom— memory bandwidth is not the critical resource and thus an any
code tuning aimed at this alleged bootleneck would not help to speed up the code. Code
optimization would rather first have to focus on the memory layout that prohibits a more
efficient vectorization of the code.

4.3. ECM performance model for variable coefficients (VC)

As for the constant coefficient kernel, there is a considerable deviation of the roofline
model prediction of 79.4 MLups/s for one WU and actual performance measurement at
39.5 MLups/s. Here, the measurement immediately confirms the assumption that memory
bandwidth is not the critical resource. We therefore again employ the ECM model with
particular interest in refining our understanding of the instruction throughput limitation.
In contrast to the roofline model, the ECM model considers the necessary data transfers
through the memory hierarchy as well as run-time for code execution for estimating the
single-core execution time. As a cache line (64byte, 8 double precision elements) is the
smallest unit of data that can be handled in the memory hierarchy, all input values to
the ECM model have to be scaled to represent this size. Run-time contributions for data
transfers have to be determined separately for each layer of the memory hierarchy.

For case (VC), as described in Section 2.1.2, we do not determine the execution time by
manual code inspection, but we employ the Intel Architecture Code Analyzer (IACA, v. 2.01).
In the (assembly) code, the dominant loop has to be marked and IACA determines (based
on a simplified micro-achitecture model of the processor) the number of cycles required
for one iteration as well as the throughput bottleneck. 246 cycles for 4 updates (4-way
SIMD) are reported, limited by the maximal throughput for load instructions. The reason
for the difference to the 136 cycles that resulted from the manual code inspection is a lack
of floating point registers. In summary, the processor cannot hold all required variables



ParTME results for Stokes system

variable V-cycle, Uzawa-type smoother 
TME factor <10 
ParTME factor >200 
coarse grid solver becomes a bottleneck
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Gmeiner, Huber, John, UR, Wohlmuth, A quantitative performance study for Stokes solvers at the 
extreme scale, Journal of Computational Science, vol.17, 2016, pp. 509-521 
Drzisga, D., John, L., UR, Wohlmuth, B., & Zulehner, W. (2018). On the Analysis of Block Smoothers for Saddle 
Point Problems. SIAM Journal on Matrix Analysis and Applications, 39(2), 932-960.

TME ParTME
DoFs  8.2×106 5.3×108 4.3×109 3.4×1010 2.7×1011

cores 1 192 1536 12288 98304

FMG-1V(2,2) 9.07 43.43 150 200 278 500

Nevertheless we are reaching 1013 unknowns.



Redesigning the HHG prototype  
Hybrid Tetrahedral Grids - HyTeG

Geometric and algebraic 
multigrid solvers with scalable 
complexity 

Scalable solvers 
Robust higher order 
discretization (Fast4HHO, 
EoCoE) 
Scalable & Robust Coarse 
Grid solvers, MUMPS, … 
… 

Advanced algorithms with 
potential for exascale computing 

Matrix-free Methods (EoCoE) 
Algorithm Based Fault 
Tolerance, ABFT 
… 

Software for ExaScale 
Computing 

TerraNeo Project 
HyTeG Software (HHG) 
 …
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Bauer, S., Mohr, M., UR, Weismüller, J., Wittmann, M., & 
Wohlmuth, B. (2017). A two-scale approach for efficient on-
the-fly operator assembly in massively parallel high 
performance multigrid codes. Applied Numerical 
Mathematics, 122, 14-38. 

Bauer, S., Drzisga, D., Mohr, M., UR, Waluga, C., & 
Wohlmuth, B. (2017). A stencil scaling approach for 
accelerating matrix-free finite element implementations. 
arXiv preprint arXiv:1709.06793 (submitted to SISC) 

Kohl, N., Thönnes, D., Drzisga, D., Bartuschat, D., UR 
(2018). The HyTeG finite-element software framework for 
scalable multigrid solvers. International Journal of Parallel, 
Emergent and Distributed Systems, 1-20.



HyTeG: Hybrid tetrahedral grids
Generalizes HHG mesh 
structures for arbitrary 
discretizations 
Structured-within-
unstructured mesh
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This decoupled design allows for intensive code reuse and enhances the extensibil-
ity. The control layer is not a↵ected by the introduction of new data structures
since only the interface of the packing layer must be implemented to allow for
communication of the respective data. A well-tested bu↵er layer abstraction is for
example already implemented in the core of the waLBerla framework [4] which
serves also as a basis for this implementation.

3. Structured Refinement of Mesh Data

In this section, the structured field data-structures for the DoFs inside the macro-
primitives are presented that result from the structured refinement of an unstruc-
tured topology. Since the largest part of the unknowns is located on the macro-faces
the descriptions in the following are focused on these primitives. The presented
concepts can be adapted for macro-edges and macro-vertices as well.

3.1 Structured Subdomains

As illustrated in Fig. 1, starting from a triangulation of the domain, a recursive
refinement is performed by connecting the three midpoints of the triangle edges.
This results in four new triangles of the same congruence class as e. g. presented in
[33].

Unknowns are placed at certain positions in the structured refined element mesh
depending on the corresponding finite element or finite volume discretisation. They
are classified as vertex-unknowns, edge-unknowns and face-unknowns reflecting
their topological position on the mesh, cf. Fig. 5.

(a) vertex DoFs (b) edge DoFs (c) face DoFs

Figure 5. Di↵erent types of degrees of freedom placed on various positions on the mesh. The colours
denote the subgroups of the individual types depending on the topological location of the DoFs on the
elements.

In the case of first-order finite elements, the unknowns are placed on the vertices as
shown in Fig. 5(a). Second-order finite elements additionally require DoFs on the
edges as displayed in Fig. 5(b). Other discretisations, such as e. g. finite volumes can
be realised by placing the unknowns on the interior of the triangles as illustrated
in Fig. 5(c). More details are given in Sec. 4.1.

The edge-unknowns are further separated into subgroups depending on whether
they are placed on a horizontal, vertical or diagonal edge of an element. The dif-
ferent groups are shown in di↵erent colours in Fig. 5(b). A similar grouping for
rectangular elements has been presented in [34].

Parallel, Emergent and Distributed Systems 5

HyTeG introduces the concept of macro-primitives. A macro-primitive describes
a geometrical object, its position, and orientation. There are di↵erent types of
macro-primitives that correspond to their respective topological relations: macro-
faces for two-dimensional objects (e. g. triangles), macro-edges for one-dimensional
lines, and macro-vertices for points.

The unstructured mesh is conceptually converted into a graph of these macro-
primitives as illustrated in Fig. 2. The graph’s vertices are instances of macro-
primitives. To construct the graph, one graph-vertex that represents one macro-
primitive per mesh-vertex, mesh-edge, and mesh-face of the unstructured mesh is
inserted into the graph.

V

V

V

V

V

V

V

V

unstructured mesh

macro-primitives

graph representation

) ⇠=

macro-vertex

macro-edge

macro-face

Figure 2. Schematic illustration of the internal macro-primitive graph representation of a 2D example
mesh.

The graph-edges connect the graph-vertices to reflect the topology of the unstruc-
tured mesh. Macro-primitives are connected with their neighbours of the next lower
and higher dimension, i. e., all graph-vertices of type macro-face are only connected
to the adjacent macro-edges but not to neighbouring macro-faces.

2.2 Simulation Data

The macro-primitives also serve as containers for arbitrary data structures. With
this abstract data-handling, any kind of data can be attached to a macro-primitive,
including instances of custom classes or standard C++ data structures.

To construct the hierarchy of refined subdomain meshes, data structures that rep-
resent fields (i. e. arrays) of unknowns are allocated and attached to the macro-
primitives. The size and shape of the fields on each macro-primitive depend on the
primitive’s geometry, the neighbouring macro-primitives, and the refinement level.
The fields are extended by ghost layers to facilitate data exchange with the neigh-
bouring macro-primitives when these are stored on di↵erent processors in a dis-
tributed memory system. Fig. 3 illustrates the structure of such fields of unknowns
that arise from a P1 finite-element discretisation on a mesh that is refined by two
levels, and is generated based on two coarse-grid mesh elements, corresponding to
the mesh in Fig. 2. Each unknown is assigned to exactly one macro-primitive. The
ownership is illustrated by black points in Fig. 3. A read-only copy may reside in
the ghost layers of other macro-primitives. The ghost layers are illustrated by white
points. The orange squares indicate the same unknown that is only owned by one
macro-primitive but resides as a read-only copy in the ghost layers of neighbouring
macro-primitives.

Geometric structure

Topological structure

Parallel, Emergent and Distributed Systems 13

(a) P1 element (b) P2 element (c) P3 element

(d) FV/DG0 element (e) DG1 (C) element (f) DG1 (E) element

Figure 8. Conforming finite elements P1 (a), P2 (b), and P3 (c). Non-conforming finite volume (FV) or
discontinuous Galerkin (DG) element of zeroth order (d), cell-based DG of first order (e) or edge-based
DG of first order (f).

4. Numerical Methods and Linear Algebra

The discretisation of PDEs on the mesh structures of HyTeG typically leads to
large systems of equations. For the implementation of iterative solvers, standard
operations like addition, scalar products, and matrix-vector multiplications have
to be performed. In the following, the realisation of these concepts within HyTeG
is described.

4.1 Discretisations

The data structures described in Sec. 3 support storing unknowns at di↵erent posi-
tions in the topology of the underlying mesh. By grouping di↵erent unknowns to-
gether, finite elements or other discretisations can be constructed. Fig. 8 illustrates
some examples of typical finite elements. The first row from Fig. 8(a) to Fig. 8(c)
presents the usual conforming finite elements [16] from first to third order. Addi-
tionally, also non-conforming finite elements that are discontinuous across the edges
can be realised, cf. Fig. 8(d) to Fig. 8(f). The elements in Figs. 8(e) and 8(f) are
inherently equivalent but di↵er only in the location on the element the unknowns
are associated with.

A global variable on the mesh discretised by a specific element may be represented
by the union of all unknowns. This union represents a vector in a finite-dimensional
linear space. On these vectors, the HyTeG framework implements a set of functions
similar to the BLAS level 1 routines [37]. For example, the routine assign shown
in Alg. 1 computes a linear combination of two vectors.

Similarly, it is possible to implement reductions on such vectors. As an example,
the implementation of the equivalent of the xDOT BLAS routine is presented in
Alg. 2.

Note that the computation performed within a primitive is independent of others,

Example element types



Part III: Lattice Boltzmann
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Single Node Performance
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SuperMUCJUQUEEN

vectorized

optimized

standard

Pohl, T., Deserno, F., Thürey, N., UR, Lammers, P., Wellein, G., & Zeiser, T. (2004). Performance evaluation of parallel large-
scale lattice Boltzmann applications on three supercomputing architectures. Proceedings of the 2004 ACM/IEEE conference 
on Supercomputing (p. 21). IEEE Computer Society. 

Donath, S., Iglberger, K., Wellein, G., Zeiser, T., Nitsure, A., & UR (2008). Performance comparison of different parallel lattice 
Boltzmann implementations on multi-core multi-socket systems. International Journal of Computational Science and 
Engineering, 4(1), 3-11.
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Weak scaling for TRT 
lid driven cavity - uniform grids

JUQUEEN  
16 processes per node 
4 threads per process

SuperMUC 
4 processes per node 
4 threads per process

0.837 × 
101

2  ce
ll 

updates  

per s
econd (T

Lups)

2.1 × 
101

2  ce
ll u

pdates  

per s
econd (T

Lups)

Extreme Scale LBM             -            Ulrich Rüde
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Domain Partitioning and Parallelization

32

static load balancing

allocation of block data (→ grids)

static block-level refinement 
(→ forest of octrees)

DISK

DISK

separation of domain partitioning 
from simulation (optional)

compact (KiB/MiB) 
binary 
MPI IO



Performance on 
Coronary Arteries 
Geometry
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Godenschwager, C., Schornbaum, F., Bauer, 
M., Köstler, H., & UR (2013). A framework for 
hybrid parallel flow simulations with a trillion 
cells in complex geometries. In Proceedings 
of SC13: International Conference for High 
Performance Computing, Networking, 
Storage and Analysis (p. 35). ACM.

Weak scaling  
458,752 cores of JUQUEEN 
over a trillion (1012)  fluid lattice cells  

Strong scaling 
32,768 cores of SuperMUC 

cell sizes of 0.1 mm 
2.1 million fluid cells 
6000 time steps per second

Color coded proc assignment



Adaptive Mesh Refinement and 
Load Balancing
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• JUQUEEN – space filling curve: Morton 
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• JUQUEEN – diffusion load balancing 
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Application Example: 

Direct simulation of complex fluids
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Pore Scale Computation  —     Ulrich Rüde

Simulation of suspended particle transport

38

Preclik, T., Schruff, T., Frings, R., & Rüde, U. (2017, August). Fully Resolved Simulations of Dune Formation in 
Riverbeds. In High Performance Computing: 32nd International Conference, ISC High Performance 2017, 
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Fully Resolved Simulations of Dune Formation in Riverbeds 11

5 Results

5.1 Compute Environment

All experiments are conducted on the petascale supercomputer SuperMUC lo-
cated at the Leibniz Supercomputing Centre in Garching near Munich. We made
use of the 18 thin node islands of SuperMUC phase 1, which consist of 512 nodes
each. At most 8 islands are usable at the same time for a job during regular
operations. Every node holds two Intel Xeon E5-2680 (Sandy Bridge-EP) eight-
core processors and is equipped with 32 GiB of main memory. The interconnect
within one island is a non-blocking tree network, while the islands are connected
via a 4:1 pruned tree. We use IBM’s MPI implementation for the interprocess
communication.

5.2 Simulation Experiment Setup

The simulation of a realistic sediment bed and the subsequent dune formation
under the e↵ect of a fluid flow above it requires a careful setup of the initial
state. This already begins with the generation of a sediment bed inside a hori-
zontally periodic domain of size L

x

⇥L

y

⇥L

z

. In our case, layers of spheres with
diameter D and density ⇢

s

are continuously created at the top of the domain,
equipped with random velocities. A↵ected by the gravitational field acting in
negative z direction, the spheres settle and arrange at the bottom which is sim-
ulated by non-smooth granular dynamics described in Sec. 3.2. The simulation
is terminated when the spheres are at rest. The thus generated flat bed features
a solid volume fraction of around 0.63 which agrees well with findings for sphere
packings created in this way [10]. Following [26], the average bed height h

s

can
be defined as that height at which the solid volume fraction averaged in both
horizontal directions hits the threshold value of 0.1. This is then used as input
for the actual coupled simulation where LBM is applied to simulate the fluid
flow inside and above the bed, as explained in Secs. 3.1 and 3.3. The character-
istic parameters of the setup are the bulk Reynolds number Re

b

= u

b

h

f

/⌫, with

Fig. 5. Cross-sectional view of initial 3D simulation setup together with the block
structure of the static grid refinement and a zoom to the fluid solid interface showing
the grid cells.
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pump

piping

flume

sediment bed

Fig. 1. Laboratory flume for studying bed forms produced by unidirectional flow.

1

2

3

4

5

flow velocity

Fig. 2. Evolution of bed forms as a function of flow velocity at a given flow depth
and bed material: (1) initial plane bed, (2) ripples, (3) dunes, (4), planar bed, and (5)
antidunes.

are other type of bed forms that frequently occur in natural rivers and predicting
their formation still remains a challenging task even at laboratory scales. The
complexity mainly stems from the large number of influence factors. Apart from
the mean flow rate, the sediment size and the flow depth will a↵ect the transition
and evolution of bed configurations. Other parameters are the density of the fluid
and of the sediment grains, the fluid viscosity, and the gravitational acceleration.

When attempting to simulate such a setup numerically, however, the free flow
surface imposes a degree of complexity to the system which can be avoided by
slightly changing the setup. Fig. 3 illustrates the alternative setup where the flow
depth is doubled and the whole flume is covered with a solid plate, parallel to
the mean plane of the bed. The flow structure in the lower half of the closed duct
is nearly the same as in the original open-channel flow. The sediment dynamics
is thus expected to be similar as long as the e↵ect of the free surface can be
neglected. This is the case for all bed forms shown in Fig. 2 except for antidunes
which necessitate the free surface. The advantage of a setup like this is that the
slope of the channel does not need to be adjusted, as the water depth is fixed.
This also has a positive e↵ect on the behavior of the sediment bed, as we do not

sediment bed

direction of flow
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 w
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original
velocity profile

new
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Fig. 3. Schematic setup of numerical flow simulation for the study of dune formation.
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Fig. 9. Close-up top view of the riverbed and the flow properties. Left: Streamlines in
the vicinity of the bed. Right: Wall shear stress distribution in a plane placed at the
average bed height.

Boltzmann method to represent the fluid dynamics which is especially well-suited
for massively parallel simulations on supercomputers due to its strictly local data
accesses. The interaction of the particles inside the sediment bed is described by
non-smooth granular dynamics. The fact that momentum is transferred between
the fluid and the solid phase and vice versa is used to establish the fluid-particle
coupling. The e�cient implementation of these algorithms into the waLBerla
framework in combination with static grid refinement techniques allowed us to
simulate dune formation in systems with up to 864.02M computational cells and
350, 000 spherical particles. We conducted strong- and weak-scaling benchmarks
on the SuperMUC supercomputer that showed perfect linear scaling behavior
for the LBM and the coupling subroutines. The performance of the granular
dynamics simulation is a↵ected by the applied block size as the synchroniza-
tion overhead grows drastically for smaller block sizes. This shows an apparent
challenge of such fully resolved coupled simulations: e�cient particle simula-
tions require several hundred particles per block which would then result in a
too large number of computational cells per block. This, on the other hand, is
undesired in the fluid simulation as it decreases the throughput in terms of time
steps per second. Finally, these benchmarks allowed us to identify a suitable
workload per process in terms of fluid cells and particles as a compromise be-
tween e�ciency and performance. This carefully tuned setup can now be used
for extensive validation against existing experimental data and ensures e�cient
usage of the valuable resources provided by the supercomputer. The physical
focus of this work was on unidirectional non-oscillatory flow and spherical par-
ticles. However, the formation and dynamics of dunes is a complex physical
phenomenon and depends on various physical parameters. Future work will thus
investigate the influence of oscillatory and combined flows, di↵erent sediment
shapes and size distributions on the system. Adaptive grid refinement for the
coupling method and a synchronization strategy suitable for particles larger than
one block will be added to the software framework to enable these studies. Such
fully resolved simulations will then lead to a better understanding of the various
physical mechanisms acting inside a riverbed.

shear stress at bed surface
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Simulation of suspended particle transport
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0.864*109 LBM cells; 350 000 spherical particles 
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Fig. 6. Weak-scaling results. For each of the block sizes the required time per coarse
time step is plotted. Each result is broken down in the four main subroutines of the
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3 levels mesh refinement 
3800 spherical particles 
Galileo number 50 

128 processes 
1024-4000 blocks 
Block size 323
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Study of particle shape effects
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oblateprolate spherical
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Why are these codes so fast?
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Pessimizing the Performance
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traverse memory in unfavorable order, ignore caches, 
use many small MPI messages 

1013 ➙ 1012  unknowns 
Do not use a matrix-free implementation: a single 
multiplication with the mass and stiffness matrix can 
easily cost 50 memory accesses 

1012 ➙ 1011  unknowns 
Write „generic code“: implement unstructured grids, 
pointers, using extensively indirect memory access 

1011 ➙ 1010  unknowns 
algorithmic overhead: check convergence 
redundantly, use an expensive error estimator, etc. 

1010 ➙ 109  unknowns  
( ... still a large system ... ) O

pt
im

iz
e 
→

with greetings from D. Bailey‘s: Twelve Ways to Fool the Masses...P
essim

ize →

 Optimizing the Performance
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Why is optimization hard?
with four strong jet engines

or with 1,000,000 
blow dryer fans? 

44

Would you want to 
propel a Superjumbo 

Our usual Software Design

Moderately Parallel Computing

Modern Computer 
Architecture



The End of Moore’s Law
We are used to 1000x improvement per decade 
through: 

Transistor Scaling - this will come to a halt 

We must change strategy: 

Architectural „improvements“  (GPU, manycore) 
Algorithms 
Implementation 

Moore’s deflation of computational cost has dictated the 
economics of computing - and now this will gradually change.

45Performance Engineering   -    Uli Rüde



In the coming decade …
absolute „performance“ instead of „scalability“ 

We will gradually refactor/redesign many of today’s 
application codes 

it is not a question of cost but of development time 

Gradual shift of investments from HW to SW 
slowdown of HW investment cycles 
performance improvements through  
                    „performance engineering“

46Performance Engineering   -    Uli Rüde
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Thank you for your attention!
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