
© Fraunhofer

TARANTELLA
A FRAMEWORK FOR DISTRIBUTED DEEP LEARNING
Peter Labus, Ph.D.

Competence Center for High Performance Computing, Fraunhofer ITWM, Kaiserslautern.

Fraunhofer Center Machine Learning.

10th HPC Status Konferenz
Gauß-Allianz

October 1, 2020

© Fraunhofer

Achievements in AI need exponentially growing computing power

…need exponentially growing computing powerAchievements in AI…

“Moore’s Law of AI”: FLOP/s-days double
every 3.5 months

[https://openai.com/blog/ai-and-compute/]

© Fraunhofer

Our distributed Deep Learning framework Tarantella has three objectives

d
is

tr
ib

u
te

d
 D

e
e
p

 L
e
a
rn

in
g

w

it
h

 T
a
ra

n
te

ll
a

objectives

 high-level user interface

 integrate well with existing tools (TensorFlow2)

High usability without HPC expertise

 automatic use of pipelining & layer-parallelism

Deep Learning without memory limits

 leverage highly optimized data parallel
implementation based on GASPI

 vendor-independent solution

Good scalability on many HPC systems

© Fraunhofer

Ta
ra

n
te

ll
a

im
p

le
m

e
n

ts
…

 split data in micro-batches

 easy to implement

 best strong scalability

 does not improve memory consumption

data parallelism

layer parallelism

pipelining

Tarantella implements three parallelization strategies

 split DNN in partitions

 improves memory consumption

 hard to achieve good load balancing

 more difficult to implement

 split layer in partitions

 necessary for very large layers

 can improve load balancing

 hard & time-consuming to implement

parallelization strategy status

[Demystifying parallel and distributed deep learning, Ben-Nun et al.]

© Fraunhofer

Tarantella’s data parallelism overlaps allreduces with backpropagation

backpropagation in Tarantella

extend TensorFlow compute graph

non-blocking allreduce using GASPI & the C++ TF ops interface

allreduce

 reduce scatter & allgather with recursive halving / doubling

 bandwidth efficient algorithm

 interleave iterations of multiple allreduces

 communication thread triggers progress in background

[Optimization of Collective Communication Operations in MPICH, R. Thakur et al.]

Planned optimizations:

 fused gradient buffers

 allreduce algorithm for latency-bound case

 hierarchical allreduce

© Fraunhofer

Tarantella’s pipelining builds on Keras and GASPI

Init: Get Keras model from user

2. Step: Add SendLayers & RecvLayers 3. Step: Replicate for all micro-batches & serialize

1. Step: Split user model into partitions

SendLayer

core

SendLayer

RecvLayer

RecvLayer

 non-blocking send & blocking recv backend (GASPI & C++ TF ops)

 custom backward pass executes recv/send

 generate tags for each connection & micro-batch

comm
core

comm
core

comm
core

BeginSeq EndSeq

 share weights amongst all micro-batches

 fake losses / metrics / datasets

 generate datasets for micro-batches

 support full Keras interface (compile, fit, evaluate, …)

 automatically manage dataset transformations / splitting
 TODO: auto-partitioning using performance model (ZiH)

core0

core1

© Fraunhofer

import tensorflow as tf

Step 1: initialize the framework
import tarantella as tnt
tnt.init()

Create Keras model
model = tf.keras.Model(resnet50.get_model())

Step 2: wrap the model
model = tnt.TarantellaModel(model)

Define optimizer with appropriate learning rate for large batch sizes
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

Build Keras model
model.compile(optimizer = sgd,

loss ='categorical_crossentropy',
metrics = (['categorical_accuracy']))

Load input data (which will be read distributedly in micro-batches)
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform distributed synchronous training
model.fit(train_dataset, nepochs, val_dataset)

Tarantella integrates well into existing TensorFlow2 / Keras models

 Tarantella support is triv ial to add

 automatic distribution of datasets

 automatic partitioning of large models*

 advanced interface for pipelining for power-users*

execute Tarantella with

tarantella_run -n 8 -ngpuspernode 4 -m machinefile \
./models/resnet50.py --batch-size=1024 -e 100

TensorFlow2 / Keras model Tarantella model

import tensorflow as tf

Create Keras model
model = tf.keras.Model(resnet50.get_model())

Define optimizer with learning rate
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

Build Keras model
model.compile(optimizer = sgd,

loss = 'categorical_crossentropy',
metrics = (['categorical_accuracy']))

Load input data in mini-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform synchronous training
model.fit(train_dataset, nepochs, val_dataset)

Integration

© Fraunhofer

The first large scale benchmarks… image class ification: ResNet50 on ImageNet

 TensorFlow 2.2, Horovod 0.20.2

 10 epochs, micro-batch size = 256

SeisLab, ITWM Kaisers lautern SuperMUC-NG, LRZ Munich

 2 x Intel® Skylake® Xeon® Platinum 8174 CPU @3.10GHz, 3.90GHz boost (48 cores/node)

 Intel® OmniPath network with 100 Gbit/s

 Intel MPI 2019

 2 x Intel® Xeon® Gold 6148 CPU @ 2.40GHz (20 cores/40 hyperthreads)

 Mellanox ConnectX-5 Infiniband network with 100 Gbit/s

 OpenMPI 1.10.7

© Fraunhofer

…show promising results image class ification: ResNet50 on ImageNet

 TensorFlow 2.2, Horovod 0.19.6

 10 epochs, micro-batch size = 32

 2 x IBM Power9 CPU (2.80 GHz, 3.10 GHz boost, 22 cores)

 6 x NVIDIA VOLTA V100 with 32GB HBM2

HPC-DA, ZiH Dresden

 Mellanox EDR Infiniband network with 100 Gbit/s

 NVLINK bandwidth 150 GB/s between GPUs and host

 openMPI 3.1.4 & NCCL 2.4.8

Results :

 compatible / better than state-of-the-art (Horovod)

 good strong scalability

 further optimizations to be exploited

Next steps :

 MLPerf benchmark suite evaluation

 full model parallelism in active development

© Fraunhofer

Distributed Deep Learning with Tarantella: summary & outlook

Tarantella open source release date:

16.11.2020

www.tarantella.org

…builds on and integrates with time-proven software

…brings easy-to-use scalability to the
Deep Learning community

 …leverages data & model parallelism for large scale
Deep Learning without memory limits

1

2

3D
is

tr
ib

u
te

d

D
e

e
p

 L
e

a
rn

in
g

w

it
h

 T
a

ra
n

te
ll

a

