TARANTELLA A FRAMEWORK FOR DISTRIBUTED DEEP LEARNING

Peter Labus, Ph.D.

Competence Center for High Performance Computing, Fraunhofer ITWM, Kaiserslautern.

Fraunhofer Center Machine Learning.

10th HPC Status Konferenz Gauß-Allianz October 1, 2020

Achievements in AI need exponentially growing computing power

Achievements in Al...

Microsoft is investing \$1 billion in OpenAI to support us building artificial general intelligence (AGI) with widely distributed economic benefits. We're

Our distributed Deep Learning framework Tarantella has three objectives

earning 5 rantell distributed Deep J D with

objectives

High usability without HPC expertise

- high-level user interface
- integrate well with existing tools (TensorFlow2)

Deep Learning without memory limits

automatic use of pipelining & layer-parallelism

SPONSORED BY THE

Good scalability on many HPC systems

- leverage highly optimized data parallel implementation based on GASPI
 - vendor-independent solution

Tarantella implements three parallelization strategies

Tarantella's data parallelism overlaps allreduces with backpropagation

backpropagation in Tarantella

$0 A - H_0 \sum A - D_{0-1} A - H_{0-1} (0)$ A-D0-3 A-B₀₋₇ ∠ E-H0-1 1 A-H₁ A-D2-3 (1) E-F0-7 E-H₀₋₃ 2 A-H₂ E₀₋₁₂ E-F E-H2-3 C-D₀₋₇ A-D4-7 A-D4-5 A-H4-5 (2) C0-12 C-D $A - D_{6-7} A - H_{6-7}$ (3) E-H4-7 G-H₀₋₇ G₀₋₁₂ G-H 6 A-He A-D8-9 A-H8-9 B₀₋₁₂ A-B8-12 E-H8-9 in one direction 10 A-H₁₀ exchanging half of data in (5) E-F8-12 E-H₈₋₁₀ F₀₋₁₂ C-D₈₋₁₂ A-D11-12 11 A-H₁₁ both directions followed by (6) D₀₋₁₂ C-D data in one the reduction operation G-H8-12 H₀₋₁₂ G-H E-H11-12

- reduce scatter & allgather with recursive halving / doubling
- bandwidth efficient algorithm
- interleave iterations of multiple allreduces
- communication thread triggers progress in background

Planned optimizations:

- fused gradient buffers
- allreduce algorithm for latency-bound case
- hierarchical allreduce

[Optimization of Collective Communication Operations in MPICH, R. Thakur et al.]

allreduce

Tarantella's pipelining builds on Keras and GASPI

1. Step: Split user model into partitions

2. Step: Add SendLayers & RecvLayers

3. Step: Replicate for all micro-batches & serialize

Tarantella integrates well into existing TensorFlow2 / Keras models

TensorFlow2 / Keras model

import tensorflow as tf

Create Keras model
model = tf.keras.Model(resnet50.get_model())

Define optimizer with learning rate
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

```
# Load input data in mini-batches
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)
```

Perform synchronous training
model.fit(train_dataset, nepochs, val_dataset)

Integration

- Tarantella support is trivial to add
- automatic distribution of datasets
- automatic partitioning of large models*
- advanced interface for pipelining for power-users*

Tarantella model

import tensorflow as tf

Step 1: initialize the framework
import tarantella as tnt
tnt.init()

Create Keras model
model = tf.keras.Model(resnet50.get_model())

```
# Step 2: wrap the model
model = tnt.TarantellaModel(model)
```

Define optimizer with appropriate learning rate for large batch sizes
sgd = tf.keras.optimizers.SGD(learning_rate=base_learning_rate)

Load input data (which will be read distributedly in micro-batches)
train_dataset = tf.data.FixedLengthRecordDataset(filenames_train)
train_dataset = train_dataset.shuffle().repeat().batch(batch_size)
val_dataset = tf.data.FixedLengthRecordDataset(filenames_validation)

Perform distributed synchronous training
model.fit(train_dataset, nepochs, val_dataset)

execute Tarantella with

```
tarantella_run -n 8 -ngpuspernode 4 -m machinefile \
./models/resnet50.py --batch-size=1024 -e 100
```


The first large scale benchmarks...

- image classification: ResNet50 on ImageNet
- TensorFlow 2.2, Horovod 0.20.2
- 10 epochs, micro-batch size = 256

SeisLab, ITWM Kaiserslautern

- 2 x Intel® Xeon® Gold 6148 CPU @ 2.40GHz (20 cores/40 hyperthreads)
- Mellanox ConnectX-5 Infiniband network with 100 Gbit/s
- OpenMPI 1.10.7

- 2 x Intel® Skylake® Xeon® Platinum 8174 CPU @3.10GHz, 3.90GHz boost (48 cores/node)
- Intel® OmniPath network with 100 Gbit/s
- Intel MPI 2019

SuperMUC-NG, LRZ Munich

...show promising results

HPC-DA, ZiH Dresden

- image classification: ResNet50 on ImageNet
- TensorFlow 2.2, Horovod 0.19.6
- 10 epochs, micro-batch size = 32

6 x NVIDIA VOLTA V100 with 32GB HBM2

- NVLINK bandwidth 150 GB/s between GPUs and host
- openMPI 3.1.4 & NCCL 2.4.8

Distributed Deep Learning with Tarantella: summary & outlook

