
Chameleon: Reactive Task Migration for
Hybrid MPI + OpenMP Applications

Jannis Klinkenberg

Chair for High Performance Computing, RWTH Aachen University

http://www.chameleon-hpc.org/Project Partner:

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

2

Chameleon – Project Overview

• Chameleon
 5th BMBF HPC call

 Runtime: 01.04.2017 – 31.03.2020

• Partner
 LMU Munich

Chair for Communication Systems and System Programming

Dr. Karl Fürlinger

 RWTH Aachen University

Chair for High Performance Computing, IT Center

Dr. Christian Terboven, Jannis Klinkenberg

 TU Munich

Department of Informatics

Prof. Dr. Michael Bader, Philipp Samfaß

• Goals
 Developing a task-based programming environment based and with extensions for MPI

and OpenMP (ease integration into existing applications)

 Enable applications to react on dynamically changing execution environment

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

3

Motivation

Many of todays HPC applications developed with bulk synchronous

setup (e.g. MPI + OpenMP)

• Very efficient for bulk synchronous solutions
 static partitioned domains

 homogeneous environment

Showcase: Execution times for a parallelized application run

T
im

e

Node 0 Node 1 Node 2 Node 3

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

4

Motivation

Is about to change for current and future HPC systems

• Increasing heterogeneity of systems
 Complex memory hierarchies (HBM, non volatile memory, DRAM, …)

 Heterogeneous compute units

• Dynamic adjustment and control based on thermal conditions, …
 Might affect performance

 Example: Turbo-Boost mode of modern CPUs

Showcase: Execution times for a parallelized application run

T
im

e

Node 0 Node 1 Node 2 Node 3

Dynamic Variability

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

5

Motivation

Dynamic variability caused by application

• Example: Iterative algorithms with adaptive mesh refinement (AMR), particle

simulations, where workload changes over time

• Showcase application: sam(oa)²
 Finite-Element and Finite-Volume simulations of dynamic adaptive meshes

 Space Filling Curves (SFC) and Adaptive Meshes for Oceanic And Other Applications

(Tohoku Tsunami 2011)

 Developed at TU Munich

• Depending on situation either refinement

or coarsening of cell / section

 Might result in load imbalance

after each iteration

(intra and inter node)

Source: https://doi.org/10.3390/atmos2030484

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

6

Chameleon Approach: Migratable Tasks + Self Introspection

• Extend OpenMP tasking / target concept

 Shared memory: Task-to-data affinity (reported in previous talks)

Proposal integrated into OpenMP 5.0 (Chameleon contribution)

 Distributed memory: Reactive task migration

• Migratable task
 Basic unit of work without side effects

 Action + data items (input and/or output)

 Can be executed locally or

migrated to another rank

1. Based on periodically collected

introspection data detect imbalance

dynamically at runtime

Result: Rank 0 is significantly slower

or has more work

2. Migrate tasks and data to Rank 1

3. Prioritized execution of migrated tasks at

Rank 1 + send back results or outputs

 Desired: Migrate as soon as possible

to overlap communication and computation

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

7

Chameleon Approach: Migratable Tasks + Self Introspection

• Essential Components

Tasked-based Execution

Environment

 Create, queue and

execute migratable tasks

 Allows early task migration

for load balancing between

ranks/nodes

Self Introspection

 Continuous monitoring of the

current rank

 Determine runtime

conditions, load or

performance metrics

Consolidation and

Analysis

 Consolidates information

from all ranks

 Decision making

o Migrate tasks?

o Victim selection

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

8

Implementation Objectives

Reactivity

Load imbalances or variability can arise on a very short time scale.

Inevitable to detect these changes as quickly as possible

Smart decision making

Implementation needs to identify emerging imbalances,

decide whether to migrate tasks and select proper victim

Hiding overhead

Migration in distributed memory induces additional overhead. Desired to

migrate tasks as soon as possible to overlap communication and computation

Ease of integration

Augmenting existing applications should not require extensive changes or efforts.

Solution is based on well established standards MPI and OpenMP

Generalization and modularity

General solution applicable to arbitrary applications.

Default behavior with opportunity to customize migration strategy

and incorporate domain or application knowledge

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

9

Chameleon – Implementation

CHAMELEON: A task-based programming environment

for the development of reactive HPC applications

• Reactive task migration library written in C/C++
 C and Fortran bindings available

 Based on well established standards MPI and OpenMP

 Default load specification + migration strategy

 CHAMELEON Tools Interface

 Customize / influence load spec. and strategies

 Incorporate domain / application knowledge

• Research questions
 Q1: How do we achieve reactivity and responsiveness?

 Q2: What is an appropriate general load metric that can be used for arbitrary applications?

 Q3: When is it recommended to migrate tasks?

 Q4: How to select proper victims?

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

10

Chameleon – Implementation

CHAMELEON: A task-based programming environment

for the development of reactive HPC applications

• Reactive task migration library written in C/C++
 C and Fortran bindings available

 Based on well established standards MPI and OpenMP

 Default load specification + migration strategy

 CHAMELEON Tools Interface

 Customize / influence load spec. and strategies

 Incorporate domain / application knowledge

• Research questions
 Q1: How do we achieve reactivity and responsiveness?

 Q2: What is an appropriate general load metric that can be used for arbitrary applications?

 Q3: When is it recommended to migrate tasks?

 Q4: How to select proper victims?

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

11

Implementation – Communication Infrastructure

• Dedicated communication thread
 Bound to last core of CPU set

 Responsible for continuous actions

 Introspection (per rank)

 Communication

(load and performance + migration)

One core not available for computation

Guarantees sufficient progression

of MPI communication

Essential for fine-granular reactivity

and responsiveness

P P P P P P

P P P P P P

Node / Rank 0

P P P P P P

P P P P P P

Node / Rank 1

Network







Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

12

Selecting Proper Migration Victims

• Initial idea: Migrate to rank with smallest load
 Might not be the best choice

 Can also result in imbalances and overhead

• 4 ranks with high load

• Idle rank represents minimum

• After migration: Rank 2 with load 4

Load 3 4 0 3 1 3

Rank 0 1 2 3 4 5

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

13

Selecting Proper Migration Victims

• Sort-based assignment
 Sort data by load & find appropriate counter parts

 Avoids contention and increases overall throughput

Load 8 2 4 3 0 7 5 3 1

Rank 0 1 2 3 4 5 6 7 8

Load 0 1 2 3 3 4 5 7 8

Rank 4 8 1 3 7 2 6 5 0

Sorted by load:

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

14

Evaluation

• Environment: CLAIX (RWTH Aachen University)
 Dual-socket Intel Xeon Broadwell E5-2650v4 nodes

 24 cores @ 2.2 GHz

 105 W TDP

 Intel Omni-Path interconnect

 Single rank per node + OpenMP thread pinning

• Compilation with Intel C/C++ or Fortran Compiler 19.0.1 and Intel MPI 2018.4

• Executed versions
 Classic hybrid MPI + OpenMP without any inter-node load balancing (24 Threads)

 Hybrid task migration approach (23 Threads)

• AMR framework sam(oa)2

• Variation and Imbalances due to

refinement

• Synthetic dense MxM benchmark

• Each rank has to solve 2400 matrix

multiplications

• Enforced power cap (PC) or

frequency changes

HW-induced imbalances SW-induced imbalances

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

15

Results Experiments – HW-induced Imbalances

With increasing

PC varying energy

efficiencies visible

Task migration is

able to

dynamically

balance the load at

runtime

higher is better

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

16

Results Experiments – SW-induced Imbalances with sam(oa)2

• Simulated 60

minutes of Tohoku

tsunami in 2011

Reduce degree of

imbalance

lower is better

higher is better

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

17

Summary & Current Topics

Chameleon

• Reactive MPI+OpenMP task migration for fine-granular load balancing

• Robustness against HW- and work-induced imbalances

Current topics

• New reactive concept: Task replication

• Allow dependencies between tasks

• Evaluate different migration strategies,

introspection metrics and applications

Thank you!

https://github.com/chameleon-hpc

http://www.chameleon-hpc.org

Backup Slides

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

19

Motivation

Ways to tackle load imbalances

• Shared memory
 Over-decomposition e.g. using OpenMP tasks and task stealing

• Distributed memory
 Over-decomposition

 e.g. by using a controller worker pattern to distribute work packages

 But: Might induce high overhead caused by message and data transfers and

requires changing algorithm to new pattern

 Global repartitioning of data / work

 Effective predictive technique to ensure proper load balance

 But: coarse grained, typically exclusive repartition phase and

might be too expensive to do that after each iteration

 Existing frameworks like Charm++, HPX, …

 High porting effort

 Need a way to dynamically / reactively adapt to changing circumstances
 i.e. dynamic load balancing between compute nodes

Chameleon: Reactive Task Migration for Hybrid MPI+OpenMP Applications

Gauß-Allianz - HPC Status Conference

October 18th, 2019

Jannis Klinkenberg

20

Code Example (Hybrid MxM multiplications)

// function that performs MxM

void compute_matrix_matrix(double *A, double *B, double *C, int mat_size);

int main()

{

...

void* lit_size = *(void**)(&size); // pointer literal representing value of size

#pragma omp parallel

{

#pragma omp for nowait

for(int i=0; i<num_tasks; i++) {

double *A = matrices_a[i];

double *B = matrices_b[i];

double *C = matrices_c[i];

#if USE_OPENMP_TARGET_CONSTRUCT

#pragma omp target map(tofrom: C[0:size*size]) map(to: A[0:size*size], B[0:size*size])

compute_matrix_matrix(A, B, C, size);

#else // API approach

map_data_entry_t* args = new map_data_entry_t[4];

args[0] = map_data_entry_create(A, size*size*sizeof(double), MAPTYPE_INPUT);

args[1] = map_data_entry_create(B, size*size*sizeof(double), MAPTYPE_INPUT);

args[2] = map_data_entry_create(C, size*size*sizeof(double), MAPTYPE_OUTPUT);

args[3] = map_data_entry_create(lit_size, sizeof(void*), MAPTYPE_INPUT | MAPTYPE_LITERAL);

add_task((void *)&compute_matrix_matrix, 4, args);

#endif

}

// trigger execution (In background: introspection + task migration)

distributed_taskwait();

}

...

}

Task Entry Point

Task Execution & Termination

Task Creation

