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BACKGROUND: GPU SOFTWARE VIEW
Massive amount of scalar threads 

Collaborative compute 

Collaborative memory access 

Thread hierarchy 
Each thread has local memory 

Parallel threads packed in blocks 
(CTAs) 

Grid executes independent groups 

Foundation: BSP 
#threads >> #cores 

=> One thread per output element
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COMPLEXITY OF MULTI-GPU
GPUs are excellent proxies for future 
processors 

(+) Fast, energy efficient  

(-) Memory capacity, power consumption 

(+) Sane programming semantics, sane 
scalability, inline with technology trends 

Applications demand for many processors 
Processing power & memory capacity 

Massively parallel communication is structured, 
selective & fine-grained 1 

Multi-GPU: beauty of simplicity is lost 
Orthogonal extensions, scattered through host 
and device code, breaking the BSP model
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1 Benjamin Klenk, Holger Fröning, An Overview of MPI Characteristics of Exascale Proxy 
Applications, International Supercomputer Conference ISC 2017. (best paper finalist)
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OBSERVATIONS ABOUT PARTITIONING
Control 

No guarantees exist for interactions among CTAs unless a kernel completion boundary 
is encountered 

=> Kernels can be safely partitioned along CTA boundaries 

Corporative Thread Groups (introduced in CUDA 9.0) might break this 
assumption in the future 

Memory 
Strong NUMA effects prohibit latency tolerance for remote accesses 

Good partitioning mainly depends on memory access pattern 

Language 
Data-parallel languages help in identifying areas of interest (kernels) 

Parallel slackness helps for scalability (larger core count due to multi-GPU)

4



MEKONG’S BASIC IDEA
Automatically transform a single-device CUDA program into 
a multi-device program 

No user intervention 

Key: automated creation of communication tasks 

Initial target one multi-GPU node, but not limited in principle 

Code analysis/code generation at compile time 
Minimize run-time overhead 

Partitioning along CTA boundaries  

=> Analysis inter-CTA, not intra-CTA (e.g., no shared memory 
analysis) 

This BMBF project: polyhedral compilation for compile-
time analysis of memory access patterns
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TODAY: UPDATE ON DECISIONS MADE

1. Compile stack 

2. Early integration of polyhedral compilation  

3. Partitioning concept for stencil codes 

4. App selection 

5. Energy instrumentation
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1./2. MEKONG’S TOOL STACK
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BACKGROUND: POLYHEDRAL COMPILATION
Polyhedral model represents iterative executions, one dimension 
per (nested) loop => multi-dimensional iteration space  

Z-Polyhedra: described by linear constraints on the universe set, or maps 
from one set to another 

Example for a matrix-matrix multiplication  

Quasi-affine access function (ISL map) +  
iteration domain (ISL set) -> read/write set (ISL set) 

a[3*i+1] (affine) 

a[(3*i)/d+1] (quasi-affine for d being integer constant) 

a[i*i] (non-affine) 

=> Reasoning about multi-dimensional computations  
and data structures; avoiding explicit unrolling  

Inline with n-dimensional thread grid (GPUs)
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SIMPLIFIED HOTSPOT EXAMPLE 
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if (tx < N && ty < N) { 
  acc = A[ty*N+tx]/2; 
  acc+=(tx>0   ? A[ty*N+tx-1] : 0)/8; 
  acc+=(tx<N-1 ? A[ty*N+tx+1] : 0)/8; 
  acc+=(ty>0   ? A[ty*N+tx-N] : 0)/8; 
  acc+=(ty<N-1 ? A[ty*N+tx+N] : 0)/8; 
  B[ty*N+tx] = acc; 
}

ISL map  
(simplified)

CUDA kernel code  
+  

1/2/3D iteration 
domain (thread grid)

partition read set write set read/write set 
+  

set algebra  
=  

data movements



EARLY RESULTS (PROTOTYPE STACK)
Proxy app: stencil code 

No residual, manually defined 
number of iterations  

No CUDA driver overhead 

8x NVIDIA K80 
16 discrete GPUs total
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3. PARTITIONING CONCEPT
Consequences of partitioning 

Strong scaling assumed 

#GPUs = #processors = p 

1. Communication overhead 
Common observation: communication 
overhead increases with p 

n-dimensional partitioning: volume vs. 
alignment 

2. Reduced utilization usually reduces 
compute efficiency  

Sustained performance/peak performance 

Fixed problem size, increasing p  
=> work/p decreasing
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4. APP SELECTION
Methods for the discretization and numerical solution of PDEs 

Numerical linear algebra: vector/vector, vector/scalar, reduction sum, sparse-matrix/vector 

Mini-app 1: Poisson’s equation in 2D with finite differences  
Three different CG, Jacobi or SSOR variants as solvers 

Mini-app 2: Poisson’s equation in 3D with finite differences 
Similar variants to (1) 

Mini-app 3: Poisson’s equation in 2D with finite elements 
For unstructured/less structured domains, similar variants to (1), possibly sparse data 
structures 

Mini-app 4: Linear convection-diffusion equation in 2D with finite elements 
(Flexible) Generalized Minimum Residual Method ((F)GMRES) instead of CG 

Challenge: efficient scalar product of two vectors
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5. ENERGY MEASUREMENT
Score-P for time measurement 

Wall-plug power: Zimmer Electronic 
Systems (ZES) LMG450 

High temporal resolution, single device 

Component power: RAPL (Intel CPUs & 
mem) & NVML (NVIDIA GPUs)  

Low temporal resolution, assumed to be 
correct, ubiquitous 

Component power (optional): PowerMon 
High temporal resolution, integration 
complexity

13D. Bedard, M. Y. Lim, R. Fowler and A. Porterfield, "PowerMon: Fine-grained and integrated power monitoring for 
commodity computer systems," Proceedings of the IEEE SoutheastCon 2010, doi: 10.1109/SECON.2010.5453824 



SUMMARY
Mekong simplifies multi-GPU programming using polyhedral compilation techniques 

Automated creation of communication tasks 

Compile stack, concept and apps defined 

Initial results very promising (overhead, scalability) 

Next: automated tool stack for fixed partitioning, partitioning decision, overlap by 
sub-partitioning & scheduling, energy implications 
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