

Microorganisms and turbulence high-performance computing in water quality prediction

- 7. HPC-Status-Konferenz der Gauß-Allianz
- M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlina, J. Qian, H. Horn | 4 Dec 2017

INSTITUTE FOR HYDROMECHANICS (IFH), ENGLER-BUNTE-INSTITUTE (EBI)

Motivation: combined sewer overflow

Introduction	Methodology	Results		Summary
●00	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Her	lina, J. Qian, H. Horn – Microorganisms and tu	rbulence	4 Dec 2017	2/13

Model of combined sewer overflow event

- turbulent, open-channel flow with sediment bed
- contamination occurs in dissolved (continuum) and particle-attached (discrete) form
- bacteria population varies due to time, UV radiance, temperature, O₂ concentration, substrate concentration, ...

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlin	a, J. Qian, H. Horn - Microorganisms and turk	oulence	4 Dec 2017	3/13

	current practice	MOAT	challenge
turbulence	RANS	DNS	wide range of scales
particles	continuum	fully resolved	sharp phase interfaces
scalar	neglected	fully resolved	steep gradients
bacteria	modeled	modeled	adaptation of models
			to higher resolution

- engineering-type models completely neglect inhomogeneities within the problem
- capturing these heterogeneities is computationally very expensive
- MOAT aims to provide a *numerical laboratory* to investigate relevant implications in order to improve engineering-type models

Introduction	Methodology	Results	Summary
000	0000	000	00
M. Stumpf, M. Uhlmann, M. Pinelli, H	H. Herlina, J. Qian, H. Horn - Microo	organisms and turbulence 4 Dec 20	17 4/13

$$\begin{aligned} \partial_{t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{\rho_{f}} \nabla \rho &= \nu \nabla^{2} \mathbf{u} + \mathbf{f}_{\mathbf{b}} \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned} \begin{bmatrix} fluid flow \\ \nabla \cdot \mathbf{u} &= 0 \end{bmatrix} \\ \partial_{t} C_{B} + (\mathbf{u} \cdot \nabla) C_{B} &= D_{B} \nabla^{2} C_{B} + R_{B} C_{B} \\ \partial_{t} C_{oxy} + (\mathbf{u} \cdot \nabla) C_{oxy} &= D_{oxy} \nabla^{2} C_{oxy} + R_{oxy} C_{oxy} \\ \partial_{t} C_{sub} + (\mathbf{u} \cdot \nabla) C_{sub} &= D_{sub} \nabla^{2} C_{sub} + R_{sub} C_{sub} \\ \partial_{t} T + (\mathbf{u} \cdot \nabla) T &= \kappa \nabla^{2} T + q \end{aligned}$$
 scalar transport
$$p_{\rho}^{(i)} V_{\rho}^{(i)} \dot{\mathbf{u}}_{\rho}^{(i)} &= \rho_{f} \oint_{\partial S^{(i)}} \mathbf{\tau} \cdot \mathbf{n} \, \mathrm{d}\sigma + (\rho_{\rho}^{(i)} - \rho_{f}) V_{\rho}^{(i)} \, \mathbf{g} \\ I_{\rho}^{(i)} \dot{\omega}_{\rho}^{(i)} &= \rho_{f} \oint_{\partial S^{(i)}} \mathbf{r} \times (\mathbf{\tau} \cdot \mathbf{n}) \, \mathrm{d}\sigma \end{aligned}$$

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlin	a, J. Qian, H. Horn - Microorganisms and turk	oulence	4 Dec 2017	5/13

MOAT – project timeline

- first phase: uncoupled simulations of particle-bound and dissolved bacteria
- $\rightarrow\,$ series of small-scale simulations on ForHLR II (8.5 mio / 15 mio CPU hours)
 - second phase: single large-scale simulation of coupled system (probably on Hazel Hen, ~ 40 mio CPU hours)

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlin	a, J. Qian, H. Horn - Microorganisms and turk	oulence	4 Dec 2017	6/13

Numerical methodology – particles

Immersed boundary method (IBM)

Uhlmann, 2005

- finite-difference DNS on fixed Cartesian grid, uniform
- rigid body motion is imposed by additional body force in momentum equations

Discrete element method (DEM)

Kidanemariam & Uhlmann, 2014

realistic particle collisions using spring-damper model

Challenges

- large number of particles $\mathcal{O}(10^5..10^6)$
- particles have finite-size and thus might affect multiple parts of decomposed fluid domain

Introduction	Methodology	Results	Summary
000	0000	000	00
M. Stumpf, M. Uhlmann, M. Pir	nelli, H. Herlina, J. Qian, H. Horn – Microorg	anisms and turbulence 4 Dec 2	2017 7/13

Weak scaling – IBM code

- scales very well in our region of interest
- scaling at HLRS yet to be done (test account granted)

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlm	ann, M. Pinelli, H. Herlina, J. Qian, H. Horn – Microorganisms	and turbulence	4 Dec 2017	8/13

First phase: particle-bound MOs

- first phase: investigate sensitivity to different initial conditions
- influence of initial contaminant distribution, bedforms, particle density
- ightarrow gather information on how to set up large scale simulation

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlin	a, J. Qian, H. Horn – Microorganisms and turk	oulence	4 Dec 2017	9/13

UV inactivation of particle-bound MOs

UV inactivation rate in engineering-type models

$$\mathcal{R}_{\mathsf{uv}}^{(i)}(t) = lpha I_{\mathsf{uv},0} \, \exp(-k_{\mathsf{att}}(\Phi_{\rho}) \, z^{(i)}(t))$$

UV inactivation rate adapted to inhomogeneities

$$R_{uv}^{(i)}(t) = \alpha I_{uv}(\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N_p)}, t) \exp(-k_{\text{att}} z^{(i)}(t))$$

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H.	Herlina, J. Qian, H. Horn -	Aicroorganisms and turbulence	Dec 2017	10/13

UV inactivation of particle-bound MOs

- UV inactivation is clearly influenced by presence of dunes and their dynamics
- \rightarrow completely neglected by engineering-type models
 - influence of initial contaminant distribution is rather small

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlin	a, J. Qian, H. Horn – Microorganisms and turl	oulence	4 Dec 2017	11/13

Summary

Impact on water technology

- flow inhomogeneities and morphodynamics clearly affect fate of bacteria
- $\rightarrow\,$ quantification of those effects can be used directly to improve simpler models
 - ability to study small-scale behavior which is not easily accessible by simple models or experiment

Computational challenges

- multi-scale problem (turbulence, low diffusivity mixing)
- large number of moving solid-fluid interfaces (particles)

Introduction	Methodology	Results		Summary
000	0000	000		•0
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlin	a, J. Qian, H. Horn – Microorganisms and turk	oulence	4 Dec 2017	12/13

Thank you for your attention

Feel free to ask questions!

Introduction	Methodology	Results		Summary
000	0000	000		00
M. Stumpf, M. Uhlmann, M. Pinelli, H. Herlina, J. Qian, H. Horn – Microorganisms and turbulence 4 Dec 2017			4 Dec 2017	13/13

- M. Uhlmann, "An immersed boundary method with direct forcing for the simulation of particulate flows", Journal of Computational Physics, Bd. 209, Nr. 2, S. 448-476, 2005.
- [2] A. G. Kidanemariam und M. Uhlmann, "Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow", International Journal of Multiphase Flow, Bd. 67, S. 174-188, 2014.