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MEKONG’S BASIC IDEA
Automatically transform a single-device CUDA program 
into a multi-device program 

No user intervention 

Key: automated partitioning and creation of communication tasks 

Initial target: one multi-GPU node, but not limited in principle 

Code analysis/code generation at compile time 
Minimize run-time overhead 

Partitioning along CTA boundaries  

=> Analysis inter-CTA, not intra-CTA (e.g., no shared memory 
analysis) 

Key for good data partitioning is memory access pattern
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UPDATE ON COMPILER PROTOTYPE
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UPDATE ON COMPILER PROTOTYPE - RESULTS
Proxy app: stencil code 

No residual, manually defined 
number of iterations  

CUDA driver overhead omitted 

No overlap exploitation (yet) 

8x NVIDIA K80 
16 discrete GPUs total
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TODAY: NEED FOR PREDICTIONS
Execution time: scheduling (overlap, scalability, GPU class) 

Power: power provisioning, heterogeneity (multiple GPU classes, CPUs) 

Main problem: time for prediction << time for execution 
Related work documents many successful approaches, most based on measured 
performance counters 

Nice survey in [1], most recent work focuses on pre-processing and neural 
networks [2][3], one compile-time analytical model (limited to certain apps) [4] 

Results suggest that ML techniques outperform analytical models
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PERFORMANCE MODELING
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CONCEPT
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INPUT FEATURES AND GROUND TRUTH

Input feature acquisition 
Analyze code features per code block 

Block frequency: prediction at compile time 

Note: block frequency currently done by 
profiling at execution time 

Data set 
parboil-2.5, polybench-gpu-1.0, rodinia-3.1, 
shoc (selected apps) 

Ground truth: performance counters and 
execution time via nvprof
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MODEL BUILDING
Preprocessing 

For each application and input data: list of kernel executions 

Each kernel execution: kernel launch configuration, execution time, performance counter 
set, power consumption 

Remove unsuitable kernels: performance counter overflows, crashes when profiling 

148 samples remain 

Data analysis 
Total execution time: histogram shows that vast majority of kernels have less than 10% 
of maximum execution time 

Instructions per cycle: histogram shows more uniform distribution 

Measures to improve data quality 
All features scaled to [0;100%], based on maximum values 

Output feature total execution time scaled using log function 
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EARLY RESULTS - DETAIL



POWER MODELING
Resolution of power 
measurement is about 50ms 

Only 7 kernels run longer than 
that 

Solutions 
Automated kernel repetition, 
e.g. using power profiles [1] 

Other measurement hardware 
(PowerMon with up to 1kHz, or 
plain nvprof) 

Use same concept as 
presented before, but new 
output feature power
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SUMMARY
Concept to model performance and power at compile time 

Code features per code block and block frequency - currently based on nvprof 

148 kernels used for training 

ANN-based inference of execution time shows promising results 

The same concept should be applicable to predict power consumption 

Mekong’s first compiler prototype 
Runs for application proxies: mmult, hotspot, n-body 

Results indicate near-zero run-time overhead 

Next 
Finish performance and power modeling work 

Use predictions for overlap of compute and communication tasks, and scalability 
predictions

 12http://www.gpumekong.org 

http://www.gpumekong.org

