STATUSUPDATE DES MEKONG-PROJEKTS

MODELING PERFORMANCE AND ENERGY AT COMPILE
TIME FOR IMPROVED SCHEDULING DECISIONS

Holger Froning, Lorenz Braun, Simon Gawlok, Sotirios Nikas, Vincent Heuveline
Heidelberg University, Germany
http://www.gpumekong.org
holger.froening@ziti.uni-heidelberg.de

BMBF HPC Statuskonferenz, 08.11.2018, RRZE Erlangen



http://www.gpumekong.org
mailto:holger.froening@ziti.uni-heidelberg.de

MEKONG"'S BASIC IDEA

Automatically transform a single-device CUDA program A 4
into a multi-device program | Compiler

No user intervention

Key: automated partitioning and creation of communication tasks |~

Initial target: one multi-GPU node, but not limited in principle

Code analysis/code generation at compile time

Minimize run-time overhead

CTA: group
Partitioning along CTA boundaries e e W

=> Analysis inter-CTA, not intra-CTA (e.g., no shared memory ¥
analysis) Heone

.
.
.
.
.

-~
-~
-~

-~
. -~
. -~
. -~
. -~
-~

. -~
. -~
. N
. -

Key for good data partitioning is memory access pattern

Received a Google Faculty Research Award in 2014




UPDATE ON COMPILER PROTOTYPE

Compile time

Run time{

e Input/output
data: polyhedral
analysis

e Dimensionality

e Computational
complexity

e Data re-use (in-
thread, inter-
thread)

Host Code
Kernel launches
Data movements

Device Code
Computational
GEHES

> Code analysis

N/

Decision

e Extended thread
hierarchy

e Index
modifications

Y\

e Executed kernels

e« Data movements
(H2D, D2H)

Code analysis <k

Performance
(Partitioning) Model

e Multi-device
initialization

Code Code
> transformation transformation

<

e Data distribution
e Kernel execution

Partitioned Multidevice

Device Code Host Code

e Data movements

Runtime

CUDA

CLANG

LLVM

v

PTX / x86

3



UPDATE ON COMPILER PROTOTYPE - RESULTS

Proxy app: stencil code

No residual, manually defined
number of iterations

CUDA driver overhead omitted

No overlap exploitation (yet)

8x NVIDIA K80

GPUs used

Grid Size
.+ 4096

— - 8192

— 16384
=+ 23200
- — 28384
-—- 32768



TODAY: NEED FOR PREDICTIONS

Execution time: scheduling (overlap, scalability, GPU class)
Power: power provisioning, heterogeneity (multiple GPU classes, CPUs)
Main problem: time for prediction << time for execution

Related work documents many successful approaches, most based on measured
performance counters

Nice survey in [1], most recent work focuses on pre-processing and neural
networks [2][3], one compile-time analytical model (limited to certain apps) [4]

Results suggest that ML techniques outperform analytical models

[1] Souley Madougoua, Ana Varbanescua, Cees de Laata, Rob van Nieuwpoortb. The landscape of GPGPU performance modeling
tools, PARCOZ2016.

[2] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W. Cameron. A Simplified and Accurate Model of Power-Performance
Efficiency on Emergent GPU Architectures. IPDP52013.

[3] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and Derek Chiou. GPGPU performance and power
estimation using machine learning, HPCA2015.

[4] S.5. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp, W.-m.W. Hwu, An adaptive performance modeling tool for GPU
architectures, SIGPLAN Not. 45 (5) (2010)



PERFORMANCE MODELING



CUDA code

Computational Kernels

Compiler
Code Analysis

Executable

x86/PTX

CONCEPT

Compile Time

Code features
Parametrized

Input Features
Total 1nstructions executed
Integer 1nstructions
Load/Store instructions
Float32 instructions
Control flow instructions
Misc 1nstructions
Grid configuration

Run Time

Launch

Inference
Predictions

Time and power
Per-kernel

Scheduling

Command line
parameters

Models

Device-specific




INPUT FEATURES AND GROUND TRUTH

Input feature acquisition
Analyze code features per code block
Block frequency: prediction at compile time for loop

Note: block frequency currently done by
profiling at execution time

1f clause
Data set
parboil-2.5, polybench-gpu-1.0, rodinia-3.1,

block I block
shoc (selected apps)

Ground truth: performance counters and end loop -
execution time via nvprof




MODEL BUILDING

Preprocessing

For each application and input data: list of kernel executions

Each kernel execution: kernel launch configuration, execution time, performance counter
set, power consumption

Remove unsuitable kernels: performance counter overflows, crashes when profiling

148 samples remain

Data analysis

Total execution time: histogram shows that vast majority of kernels have less than 10%
of maximum execution time

Instructions per cycle: histogram shows more uniform distribution

Measures to improve data quality

All features scaled to [0;100%], based on maximum values

Output feature total execution time scaled using log function



EARLY RESULTS - DETAIL

As

L v

® data
-e- LR

| === ANN

LA

10°
105 |
103
102

4
o
—

[sn]awil

10

80 100 120 140

Sample #

60

40

20

101 -



POWER MODELING

Resolution of power
measurement is about 50ms

Only 7 kernels run longer than
that

Solutions

Automated kernel repetition,
e.g. using power profiles [1]

Other measurement hardware
(PowerMon with up to 1kHz, or
plain nvprof)

Use same concept as
presented before, but new
output feature power

[1] Jens Lang and Gudula Riinger. High-Resolution Power Profiling of GPU Functions Using Low-Resolution Measurement. EuroPAR 2013.

pmlib server

] —

Ee
& LUEE

b=

W ILEE |

P )

!

2}
.4

LMG450 - Power Analyzer - ZES ZIMMER

Ethernet

External GPU-server
powermeter

: Power
— supply
unit

Mainboard

pmlib client

11



SUMMARY

Concept to model performance and power at compile time
Code features per code block and block frequency - currently based on nvprof

148 kernels used for training
ANN-based inference of execution time shows promising results

The same concept should be applicable to predict power consumption

Mekong’s first compiler prototype
Runs for application proxies: mmult, hotspot, n-body

Results indicate near-zero run-time overhead

Next

Finish performance and power modeling work

Use predictions for overlap of compute and communication tasks, and scalability
predictions

http://www.gpumekong.org

12


http://www.gpumekong.org

