
STATUSUPDATE DES MEKONG-PROJEKTS

MODELING PERFORMANCE AND ENERGY AT COMPILE
TIME FOR IMPROVED SCHEDULING DECISIONS

Holger Fröning, Lorenz Braun, Simon Gawlok, Sotirios Nikas, Vincent Heuveline
Heidelberg University, Germany

http://www.gpumekong.org
holger.froening@ziti.uni-heidelberg.de

BMBF HPC Statuskonferenz, 08.11.2018, RRZE Erlangen

http://www.gpumekong.org
mailto:holger.froening@ziti.uni-heidelberg.de

MEKONG’S BASIC IDEA
Automatically transform a single-device CUDA program
into a multi-device program

No user intervention

Key: automated partitioning and creation of communication tasks

Initial target: one multi-GPU node, but not limited in principle

Code analysis/code generation at compile time
Minimize run-time overhead

Partitioning along CTA boundaries

=> Analysis inter-CTA, not intra-CTA (e.g., no shared memory
analysis)

Key for good data partitioning is memory access pattern

 2

Compiler

Data-Parallel	Code

GPU GPU GPU

Mekong

GPU GPU GPU

Data-Parallel	Code
CTA: group
of threads

Received a Google Faculty Research Award in 2014

UPDATE ON COMPILER PROTOTYPE

 3

Code analysis

Code
transformation

•Input/output
data: polyhedral
analysis

•Dimensionality
•Computational
complexity

•Data re-use (in-
thread, inter-
thread)

•Extended thread
hierarchy

•Index
modifications

Code analysis

Code
transformation

Device Code
Computational

Kernels

Host Code
Kernel launches
Data movements

Partitioned
Device Code

Multidevice
Host Code

Decision
(Partitioning)

Performance
Model

•Executed kernels
•Data movements  
(H2D, D2H)

•Multi-device
initialization

•Data distribution
•Kernel execution
•Data movements

CLANG

LLVM

CUDA

PTX / x86
Runtime

(

(

Compile time

Run time

UPDATE ON COMPILER PROTOTYPE - RESULTS
Proxy app: stencil code

No residual, manually defined
number of iterations

CUDA driver overhead omitted

No overlap exploitation (yet)

8x NVIDIA K80
16 discrete GPUs total

 4

1

2

4

1 2 4 8 16
GPUs used

Sp
ee

du
p

Grid Size
4096

8192

16384

23200

28384

32768

Hotspot

TODAY: NEED FOR PREDICTIONS
Execution time: scheduling (overlap, scalability, GPU class)

Power: power provisioning, heterogeneity (multiple GPU classes, CPUs)

Main problem: time for prediction << time for execution
Related work documents many successful approaches, most based on measured
performance counters

Nice survey in [1], most recent work focuses on pre-processing and neural
networks [2][3], one compile-time analytical model (limited to certain apps) [4]

Results suggest that ML techniques outperform analytical models

 5

[1] Souley Madougoua, Ana Varbanescua, Cees de Laata, Rob van Nieuwpoortb. The landscape of GPGPU performance modeling
tools, PARCO2016.

[2] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W. Cameron. A Simplified and Accurate Model of Power-Performance
Efficiency on Emergent GPU Architectures. IPDPS2013.

[3] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and Derek Chiou. GPGPU performance and power
estimation using machine learning, HPCA2015.

[4] S.S. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp, W.-m.W. Hwu, An adaptive performance modeling tool for GPU
architectures, SIGPLAN Not. 45 (5) (2010)

PERFORMANCE MODELING

 6

CONCEPT

 7

Compiler
Code Analysis

CUDA code
Computational Kernels

Executable
x86/PTX

Compile Time

Code features
Parametrized

Run Time

Launch Command line
parameters

Scheduling

Inference
Predictions

Execution

Models
Device-specific

Time and power
Per-kernel

Input Features
Total instructions executed  

Integer instructions  
Load/Store instructions  
Float32 instructions  

Control flow instructions  
Misc instructions
Grid configuration

INPUT FEATURES AND GROUND TRUTH

Input feature acquisition
Analyze code features per code block

Block frequency: prediction at compile time

Note: block frequency currently done by
profiling at execution time

Data set
parboil-2.5, polybench-gpu-1.0, rodinia-3.1,
shoc (selected apps)

Ground truth: performance counters and
execution time via nvprof

 8

if clause

block for loop

if clause

block

end loop

exit

block

MODEL BUILDING
Preprocessing

For each application and input data: list of kernel executions

Each kernel execution: kernel launch configuration, execution time, performance counter
set, power consumption

Remove unsuitable kernels: performance counter overflows, crashes when profiling

148 samples remain

Data analysis
Total execution time: histogram shows that vast majority of kernels have less than 10%
of maximum execution time

Instructions per cycle: histogram shows more uniform distribution

Measures to improve data quality
All features scaled to [0;100%], based on maximum values

Output feature total execution time scaled using log function

 9

 10

EARLY RESULTS - DETAIL

POWER MODELING
Resolution of power
measurement is about 50ms

Only 7 kernels run longer than
that

Solutions
Automated kernel repetition,
e.g. using power profiles [1]

Other measurement hardware
(PowerMon with up to 1kHz, or
plain nvprof)

Use same concept as
presented before, but new
output feature power

 11[1] Jens Lang and Gudula Rünger. High-Resolution Power Profiling of GPU Functions Using Low-Resolution Measurement. EuroPAR 2013.

GPU-server

Power
supply
unit

External
powermeter

LMG450 - Power Analyzer - ZES ZIMMER

Mainboard

Ethernet

pmlib server

Figure 2. Single-node application system and sampling points for external

pmlib client

SUMMARY
Concept to model performance and power at compile time

Code features per code block and block frequency - currently based on nvprof

148 kernels used for training

ANN-based inference of execution time shows promising results

The same concept should be applicable to predict power consumption

Mekong’s first compiler prototype
Runs for application proxies: mmult, hotspot, n-body

Results indicate near-zero run-time overhead

Next
Finish performance and power modeling work

Use predictions for overlap of compute and communication tasks, and scalability
predictions

 12http://www.gpumekong.org

http://www.gpumekong.org

