ELP

Effektive Laufzeitunterstützung für zukünftige Programmierstandards

Zwischenbericht

ELP

Speaker: Christian Terboven, RWTH Aachen University
Agenda

- ELP Project Goals
- ELP Achievements
- Remaining Steps
ELP Project Goals

- **Goals of ELP: Improve programmer productivity**
 - By influencing the Programming Standards
 - By extending Compiler / Runtime / Tools Support
 - Reducing workflow complexity
 - tight tool integration in the workflow

- **Make the correctness analysis part of a standard workflow**

- **Results for SMEs and General Dissemination**
 - Know-How in designing and operating accelerator-based HPC systems
 - Improved user support in code parallelization projects and in benchmarking
The ELP Approach for Programmer Productivity

- **Support for directive-based standards**
 - Focus on OpenMP 4.0
 - Infrastructure is available as open source
 - OpenACC support is limited to selected activities
 - Extended OpenMP Runtime
 - OpenMP standardization work
 - Prototype implementation of proposed extensions, i.e. OMPT in Intel runtime

- **Performance Analysis on accelerators with Score-P and Vampir**

- **Correctness Checking with MUST**
 - Support for Hybrid Programs in MUST: MPI + OpenMP
 - New kinds of races, support of new APIs
 - Hybrid deadlocks

Speaker: Christian Terboven, RWTH Aachen University
Tools Landscape

- MUST
- Score-P
- VAMPiR
- PnMPI
- OMPT
- ACCT

Application:

MPI / MPI + OpenMP / MPI + OpenACC / MPI + OpenMP + OpenACC

Speaker: Christian Terboven, RWTH Aachen University
MUST and Score-P

- MUST was limited on MPI correctness analysis:
 - Type mis-matches, overlapping of buffer usage, ...
 - Deadlocks resulting from MPI calls
- ELP: support for hybrid MPI + OpenMP programs
 - Pure OpenMP 4.0: data races between host and accelerator, deadlocks, ...
 - Hybrid: MPI deadlocks involving threads, data races involving data transfer, ...
- Score-P: Scalable performance measurement infrastructure for parallel codes
 - Measurement infrastructure for profiling, event tracing and online analysis of applications
- ELP: Support for OpenMP 4.0 and OpenACC programs
 - Standardized tools interfaces: OMPT and ACCT
 - Recording of
 - OpenMP target Events
 - OpenMP Events on the target device (offloaded via the target construct)
 - OpenACC Events
Agenda

- ELP Project Goals
- ELP Achievements
- Remaining Steps

Speaker: Christian Terboven, RWTH Aachen University
Project Achievements: Overview

- **MUST + GTI infrastructure is ready for hybrid parallel programs**
 - Set of new checks: correct use of OpenMP barriers, simple hybrid deadlocks

- **OMPT completed and ported to latest open source OpenMP Runtime**
 - Patch provided for LLVM Runtime, close collaboration with RICE and UOREGON and INTEL

- **Proposal for an OMPT extension to support OpenMP 4.0 constructs, including a prototype implementation in the Intel/LLVM OpenMP Runtime**
 - supporting the development of OpenMP and OMPT: OpenMP 4.0 target

- **OpenACC Profiling Interface is part of OpenACC 2.5**
 - supporting the development of OpenACC

- **8 peer-reviewed papers published**
Project Achievements: OMPT (1/2)

- Contribution to future OpenMP specification (technical report)
 - Proposal for an extensions of the OpenMP Tools Interface [1]
 - Revised technical report for an OpenMP Tools Interface [2]
 - Adding an interface for buffer traces (collaboration with RICE)
 - Asynchronous buffer handling
 - Approach similar to CUDA performance tools interface (CUPTI)
 - Reference implementation available [3]

Project Achievements: OMPT (2/2)

- OMPT extension in Score-P
 - Low overhead
 - 1.5 % (host-sided events only)
 - 12.9 % (host- and device-sided events)
 - Future Work: Use OMPT Buffering API
Vampir: Performance Data Visualization

Visualization of OTF2 traces that have been generated by Score-P
Screenshot shows prototype implementation for an OpenMP 4.0 program that performs computation on a target device.
Project Achievements: OpenACC Tools Interface

- **OpenACC 2.5 standard released in November 2015**

- **Technical report has been incorporated in the official specification**
 - Chapter 5: Profiling Interface
 - Defines a set of OpenACC runtime events

- **Score-P prototype implementation**
 - Tested with the PGI 15.x compilers
 - Only a few PGI-specifics left
 - Validated with OpenACC benchmarks of the SPEC ACCEL suite

- **Dissemination**
 - Presented at SC’15, HPCwire article: „OpenACC Reviews Latest Developments and Future Plans”
 - Paper published at ICPP’15: “OpenACC Programs Examined: A Performance Analysis Approach”
Project Achievements: Hybrid Correctness Checking

- OMPT: integration into MUST’s event system completed
 - Prototype OMPT 4.1 target support available

- Detections already implemented in MUST, utilizing OMPT:
 - Wrong threading level
 - With more than one thread `MPI_Init` is used instead of `MPI_Init_thread`
 - `MPI_THREAD_SINGLE` is used with multiple threads
 - MPI-Thread-Level < MPI_THREAD_MULTIPLE when multiple threads issue MPI-Calls concurrently
 - Multiple threads of a team passing different barriers
 - Usage of uninitialized locks
 - Deadlock using a single lock
 - Deadlock using multiple locks
Agenda

- ELP Project Goals
- ELP Achievements
- Remaining Steps
Next Steps

- Continued quality control wrt/ compatibility w/ Linux SW stacks

- Completion of the memory access tracing
 - will enable us to extend the correctness checks to include data races

- Score-P
 - Enhance stability and functionality of the prototypes (as always 😊)
 - Advance standardization of OpenMP and OpenACC tools interfaces to enable the implementation into the stable Score-P product release
 - OpenACC part almost done, expected for next release
 - Integrate OMPT device activity buffering API

- Review OpenMP 4.5 (released in Nov. 2015)
 - Support extended target functionality

- Support development of OpenMP 5.0 to include OMPT
The ELP-Team Thanks You!

http://www.vi-hps.org/projects/elp/

Christian Terboven
terboven@itc.rwth-aachen.de