

NEC

FEPA – A framework for systematic energy and performance analysis of extreme-scale applications in HPC computing centers

T. Röhl J. Eitzinger RRZE a joint project with:

rz

Bundesministerium für Bildung und Forschung

Grant Nr. 01IH13009

- Based on Ganglia
- Cronjob reads host data periodically
- Ganglia stores values in one RRD per metric
- Historically grown feature set with distinct pages
 - Overview about all running jobs and one page per job
 - Host dedicated page without job information
 - Roofline diagram and custom plot generator
 - Maui reservations, NEC InfiniBand wizard
 - GPU overview page for all GPU nodes
- No (automatic) quality evaluation of job data
 - only thresholds and human detector

Overview about all running jobs & jobspecific page

	1 minute load				memory used [MB] ₹				SP MFlop/s				DP MFlop/s			
	30			L / TOB	30 k			IL / T08	15 k				120 k 100 k 80 k	hip hain	Part of the second s	
	20		-		20 k			I OFT	10 k			I E	60 k			
	10			. KER	10 k			KER	5 k			KER	40 k 20 k			KER
ive_1_23	0+ Fri	00:00	Fri 06:00	Fri 12:00	0 Fri	00:00	Fri 06:00	Fri 12:00	0 Fr	i 00:00	Fri 06:00	Fri 12:00	0 Fr:	i 00:00	Fri 06:00	Fri 12:00
	e0644	17.8/	18.0/	16.5	e0644	3077.9/	3087.4/	3073.5	📕 e0644	0.1/	0.1/	0.1	e0644	115082.4/	120975.2/	107037.3
23:59:00	e0517	16.7/	18.3/	16.4	e0517	2961.1/	2966.9/	2961.5	🗖 e0517	0.1/	0.1/	0.1	e0517	97996.0/	119448.2/	104599.1
	e0514	16.8/	19.0/	16.4	e0514	2976.5/	2978.5/	2971.7	🗖 e0514	0.1/	0.1/	0.1	e0514	106878.2/	122569.4/	105541.3
14:27:11	e0509	15.5/	19.1/	16.3	e0509	3057.2/	3066.4/	3059.5	e0509	0.1/	0.1/	0.1	e0509	99418.6/	118458.1/	103397.3
	e0507	16.9/	18.0/	16.4	e0507	2963.9/	2969.4/	2962.9	e0507	0.1/	0.1/	0.1	e0507	105250.0/	117619.6/	103860.1
	e0501	16.4/	19.3/	16.4	e0501	3094.3/	3099.1/	3090.0	🗌 e0501	0.1/	0.1/	0.1	🗖 e0501	92196.6/	119240.5/	104974.4
	e0448	16.1/	19.4/	16.5	e0448	3120.6/	3126.0/	3119.5	📕 e0448	0.1/	0.1/	0.1	e0448	86387.6/	118893.7/	103453.5
	e0447	16.2/	18.6/	16.4	e0447	3085.8/	3094.1/	3088.1	📕 e0447	0.1/	0.1/	0.1	e0447	101168.5/	122861.8/	105025.0
	e0446	16.5/	18.7/	16.4	e0446	3083.3/	3084.5/	3078.9	📕 e0446	0.1/	0.1/	0.1	e0446	88407.4/	119730.0/	104829.8
	230916-1213	3 cur/max/a	avg =≻ AVG	16.4	230916-121	3 cur/max/	avg =≻ AVG	3045.1	230916-1	213 cur/max/	avg => AVG	0.1	230916-12	213 cur/max/	avg ≕> AVG	104746.4

Performance statistic jobid=653066 (

Thomas.Roehl@fau.de

653066

GIC_massiv 9 nodes walltime 23 usedtime 14 work

28.11.2016

Roofline diagram

Ganglia Data / Roofline (23. Sep. 2016 - 12:15:27)

Click and drag to zoom in. Hold down shift key to x-pan.

Thomas.Roehl@fau.de

Custom plot generator

Ganglia Data (23. Sep. 2016 - 12:16:58)

Thomas.Roehl@fau.de

28.11.2016

High Performance Computing

Maui reservations & Cluster usage status

Node status @ 23.09.2016 - 12:18

1061_	1062 _	1063_	1064 _	1065 _	1066 _	1067 _	1068 _	1161_	1162 _	1163_	1164 _	1165_	1166 _	1167 J	1168 X
0101 *	0102_	0103 *	0104 *	0105 *	0106 *	0107 *	0108 *	0109 J	0110 J	0111 J	0112 J	0113 J	0114 J	0115 J	0116 J
0117 J	0118 J	0119 J	0120 J	0121 J	0122 J	0123 J	0124 J	0125 J	0126 J	0127 J	0128 J	0129 J	0130 J	0131 J	0132 J
0133 J	0134 J	0135 J	0136 J	0137 J	0138 J	0139 J	0140 J	0141 J	0142 J	0143 J	0144 J	0145 J	0146 J	0147 J	0148 J
0149 J	0150 *	0151 J	0152 J	0153 J	0154 J	0155 J	0156 J	0201 J	0202 J	0203 J	0204 J	0205 J	0206 J	0207 J	0208 J
0209 J	0210 J	0211 J	0212 J	0213 J	0214 J	0215 J	0216 J	0217 J	0218 J	0219 J	0220 J	0221 J	0222 J	0223 J	0224 J
0225 J	0226 J	0227 J	0228 J	0229 J	0230 J	0231 J	0232 J	0233 J	0234 J	0235 J	0236 J	0237 J	0238 J	0239 J	0240 J
0241 J	0242 J	0243 J	0244 J	0245 J	0246 J	0247 J	0248 J	0249 J	0250 J	0251 J	0252 J	0301 J	0302 J	0303 J	0304 J
	X down		1	. offline		() J job-exc	J job-exclusive		517 ? state-unknown			0		
	* free-and-error		16	_ free		25	5 # job-an	# job-and-error		1 j not-all-procs-used			0		

Thomas.Roehl@fau.de

- Ganglia simple and easy but only admin-view
 - Job-view must be scripted
- On HPC systems often vendor-specific tools are used
 - Newest cluster at RRZE uses Megware's ClustWare
 - IMHO: Designed some years ago
- Just presentation of metrics, no further processing
- Less flexible
- Reduced feature set compensated with fancy web pages
- No spontaneous addition of additional metrics

Performance

 Provide tooling infrastructure which allows to globally profile application performance in large supercomputing centers

Scalable, flexible integration of tools, aggregation for multidevice jobs

 Embed application profiling in a pattern-driven performance engineering process aiming for maximum resource utilization

Adaption of metrics required, application level tools provide metrics, hardware performance monitoring, additional hardware information

 Provide knowledge which enables to significantly improve the efficient use of HPC compute resources across all application domains

Thomas.Roehl@fau.de

Planned infrastructure

Builds upon the results of previous BMBF projects: ISAR (LRZ) TIMaCS (NEC)

Opportunity to establish the LIKWID Open Source project as an alternative to established solutions

All components will be Open Source and can also be used stand alone

Thomas.Roehl@fau.de

Realized infrastructure

Basic architecture with aggmon (NEC) middleware for job-wide aggregations

Middleware can by be bypassed for small systems (no aggregations 'on the way')

Each user gets own database + a global admin database (InfluxDB)

Web frontend changed to Grafana (scriptable)

LRZ frontend still in development (required for SuperMUC successor)

Still anything Open-Source

Thomas.Roehl@fau.de

New analysis agent

- Too much effort to adapt analysis agent of LRZ for RRZE
- New analysis agent must perform multiple tasks:
 - Receive and handle START_JOB and END_JOB signals (or get information from job scheduler)
 - Tag all measurements during forward to admin DB
 - Due to security problems duplicate messages in user-job-specific DBs
 - Configure Webfrontend for cluster users
 - Create job-specific Webfrontend views (pre-configured + variable)
 - Traffic lights of selected metrics
 - Job-specific graphs
 - Host-specific graphs
 - CPU-specific graphs

- Provide more options for dashboard creation
- Abstract database layer
 - Support multiple databases
 - Differentiation between time-series and meta data
- Automatic job evaluation based on more complex thresholds, aggregation and metrics
- Interfaces for evaluation (ZeroMQ publishers)
 - On streaming data (during forward)
 - On full data (at END_JOB)

Webfrontend Grafana

- Commonly visualization of time-series data
- Most time-series databases supported
- (Almost) anything can be managed through HTTP API
- User-management with LDAP or stand-alone
- Dashboard configuration with JSON documents
 - Templates offer easy selection (all hosts of a job, ...)
 - Annotations for user/application-defined events

- But: Main focus on real-time data visualization
- To play around: <u>http://play.grafana.org/</u>

hostname: All - cpuid: All -										
Min CPI	Average Local Memory Bandwidth	Average DP FLOP rate								
0.06	8	4769								
Host graphs										
СРІ										
DP FP RATE (MFLOP/S)										
LOCAL MEMORY BANDWIDTH										
REMOTE MEMORY BANDWIDTH										
SP FP RATE (MFLOP/S)										
Detailed graphs										
Hosts and CPUs										
•	CPI PER CPU									
•	DP FP RATE (MFLOP/S) PER CPU									
	SP FP RATE (MFLOP/S) PER CPU									

Thomas.Roehl@fau.de

Application-defined metrics (I)

- Application metrics are <u>essential</u>
- Could use big annotation frameworks like Caliper
 Often: Too much overhead, too big memory footprint and too many features
- Required:
 - Simple and pragmatic
 - Minimal memory footprint
 - Flexible to fit into current infrastructure

Performance

Result libusermetrics:

- C library with
 - init()
 - send_values() // provide metric values
 - send_events() // provide annotations
 - close()
- Takes arbitrary tags to describe values/event
 - Except 'user', 'host' and 'jobid'
- Restricted tag keys 'user', 'host' and 'jobid' added automatically
- Shell application exists to supply values/events from command line/job script
- Values and events are automatically handled by analysis agent
 - Grafana dashboards get extra user metrics section
 - Annotation visible in all graphs
- Can be embedded in other applications

Thomas.Roehl@fau.de

Screenshot (II)

Thomas.Roehl@fau.de

- Installing system on "old" compute cluster at RRZE
- Running installation on some nodes at RWTH Aachen
- Integrate pygrafana into analysis agent
- Optional connection to job scheduling system
- Multiple jobs running on the same node
 - requires at least pinning
 - How to handle system-wide metrics (memory consumption, load, …)
- Rethinking whole system with respect to the upcomming DFG project ,ProPE' in collaboration with RWTH Aachen and TU Dresden
 - Alternative to InfluxDB
 - Split information bases in time-series and meta data
 - Substitue host agent with more flexible solution e.g. Intel Snap

Pattern based performance analysis

Reason 1: Measure many HPM events on compute nodes (Overhead) Reason 2: Local analysis steals compute power, remote analysis too late to decide which group should be measured next

- Automatic metric /event submission using MPI_T , OMPT or DWARFs
- Performance model graphs for Grafana (Roofline, ECM)
- Feedback of analysis agent back to compute nodes:
 - Adapt CPU frequency (integrate energy-awareness)
 - Change measurement intervals of collectors
 - Change event set for LIKWID

Thank you for your attention! Any Questions? Want to try it, contact me

Node Agent: https://github.com/TomTheBear/Diamond

- LIKWID: <u>https://github.com/RRZE-HPC/likwid</u>
- LIKWID Python interface: <u>https://github.com/TomTheBear/likwid-python-api</u>
 Middleware: <u>https://github.com/efocht/aggmon</u> (MongoDB/TokuMX)
 Analysis agent: <u>https://github.com/TomTheBear/influxdb-grafana-router</u>
 Grafana Frontend: <u>https://github.com/grafana/grafana</u>
- Pygrafana: <u>https://github.com/TomTheBear/pygrafana</u>
 Persyst Frontend: <u>https://www.webapps.lrz.de/</u> (with DEMO)
 Database: <u>https://github.com/influxdata/influxdb</u>

Thomas.Roehl@fau.de

