
STATUSUPDATE DES MEKONG-PROJEKTS

MEKONG: AUTOMATISIERTE PARTITIONIERUNG FÜR HETEROGENE
SYSTEME DURCH CODE-ANALYSE UND -TRANSFORMATION

Holger Fröning, Lorenz Braun, Simon Gawlok, Vincent Heuveline
Ruprecht-Karls University of Heidelberg, Germany

http://www.ziti.uni-heidelberg.de/compeng
holger.froening@ziti.uni-heidelberg.de

BMBF HPC Statuskonferenz, 04.12.2017, HLRS Stuttgart

http://www.ziti.uni-heidelberg.de/compeng
mailto:holger.froening@ziti.uni-heidelberg.de

BACKGROUND: GPU SOFTWARE VIEW
Massive amount of scalar threads

Collaborative compute

Collaborative memory access

Thread hierarchy
Each thread has local memory

Parallel threads packed in blocks
(CTAs)

Grid executes independent groups

Foundation: BSP
#threads >> #cores

=> One thread per output element

2

Thread
block

Grid 0

Grid 1

shared memory

global memory

Threadlocal memory

Thread
warp

void

time

CTA

COMPLEXITY OF MULTI-GPU
GPUs are excellent proxies for future
processors

(+) Fast, energy efficient

(-) Memory capacity, power consumption

(+) Sane programming semantics, sane
scalability, inline with technology trends

Applications demand for many processors
Processing power & memory capacity

Massively parallel communication is structured,
selective & fine-grained 1

Multi-GPU: beauty of simplicity is lost
Orthogonal extensions, scattered through host
and device code, breaking the BSP model

3
1 Benjamin Klenk, Holger Fröning, An Overview of MPI Characteristics of Exascale Proxy
Applications, International Supercomputer Conference ISC 2017. (best paper finalist)

L2 slice L2 slice

Address-sliced XBARs Address-sliced XBARs

SM SM SM SM SM SM

L2 slice L2 slice

Address-sliced XBARs Address-sliced XBARs

SM SM SM SM SM SM

L2 slice L2 slice

Address-sliced XBARs Address-sliced XBARs

SM SM SM SM SM SM

OBSERVATIONS ABOUT PARTITIONING
Control

No guarantees exist for interactions among CTAs unless a kernel completion boundary
is encountered

=> Kernels can be safely partitioned along CTA boundaries

Corporative Thread Groups (introduced in CUDA 9.0) might break this
assumption in the future

Memory
Strong NUMA effects prohibit latency tolerance for remote accesses

Good partitioning mainly depends on memory access pattern

Language
Data-parallel languages help in identifying areas of interest (kernels)

Parallel slackness helps for scalability (larger core count due to multi-GPU)

4

MEKONG’S BASIC IDEA
Automatically transform a single-device CUDA program into
a multi-device program

No user intervention

Key: automated creation of communication tasks

Initial target one multi-GPU node, but not limited in principle

Code analysis/code generation at compile time
Minimize run-time overhead

Partitioning along CTA boundaries

=> Analysis inter-CTA, not intra-CTA (e.g., no shared memory
analysis)

This BMBF project: polyhedral compilation for compile-
time analysis of memory access patterns

5

Compiler

Data-Parallel	Code

GPU GPU GPU

Mekong

GPU GPU GPU

Data-Parallel	Code

TODAY: UPDATE ON DECISIONS MADE

1. Compile stack

2. Early integration of polyhedral compilation

3. Partitioning concept for stencil codes

4. App selection

5. Energy instrumentation

6

1./2. MEKONG’S TOOL STACK

7

Code analysis

Code
transformation

•Input/output
data

•Memory access
patterns
•-> Regularity

•Dimensionality
•Computational
complexity

•Data re-use (in-
thread, inter-
thread)

•Extended thread
hierarchy

•Index
modifications

Code analysis

Code
transformation

Device Code
Computational

Kernels

Host Code
Kernel launches
Data movements

Partitioned
Device Code

Multidevice
Host Code

Decision
(Partitioning)

Performance
Model

•Executed kernels
•Data movements  
(H2D, D2H)

•Multi-device
initialization

•Data distribution
•Kernel execution
•Data movements

CLANG

LLVM

CUDA

PTX / x86
Runtime

Polyhedral
analysis

BACKGROUND: POLYHEDRAL COMPILATION
Polyhedral model represents iterative executions, one dimension
per (nested) loop => multi-dimensional iteration space

Z-Polyhedra: described by linear constraints on the universe set, or maps
from one set to another

Example for a matrix-matrix multiplication

Quasi-affine access function (ISL map) +  
iteration domain (ISL set) -> read/write set (ISL set)

a[3*i+1] (affine)

a[(3*i)/d+1] (quasi-affine for d being integer constant)

a[i*i] (non-affine)

=> Reasoning about multi-dimensional computations  
and data structures; avoiding explicit unrolling

Inline with n-dimensional thread grid (GPUs)

8
array C

array B
array A

i

j

k

SIMPLIFIED HOTSPOT EXAMPLE

9

if (tx < N && ty < N) {
 acc = A[ty*N+tx]/2;
 acc+=(tx>0 ? A[ty*N+tx-1] : 0)/8;
 acc+=(tx<N-1 ? A[ty*N+tx+1] : 0)/8;
 acc+=(ty>0 ? A[ty*N+tx-N] : 0)/8;
 acc+=(ty<N-1 ? A[ty*N+tx+N] : 0)/8;
 B[ty*N+tx] = acc;
}

ISL map  
(simplified)

CUDA kernel code  
+  

1/2/3D iteration
domain (thread grid)

partition read set write set read/write set 
+  

set algebra  
=  

data movements

EARLY RESULTS (PROTOTYPE STACK)
Proxy app: stencil code

No residual, manually defined
number of iterations

No CUDA driver overhead

8x NVIDIA K80
16 discrete GPUs total

10
0

25

50

75

100

1 3 5 7 9 11 13 15
GPUs

Ex
ec

ut
io

n
tim

e
(s

)

Rest Transfers Kernel
Hotspot, n = 28384, 1000 steps

3. PARTITIONING CONCEPT
Consequences of partitioning

Strong scaling assumed

#GPUs = #processors = p

1. Communication overhead
Common observation: communication
overhead increases with p

n-dimensional partitioning: volume vs.
alignment

2. Reduced utilization usually reduces
compute efficiency

Sustained performance/peak performance

Fixed problem size, increasing p  
=> work/p decreasing

11

4. APP SELECTION
Methods for the discretization and numerical solution of PDEs

Numerical linear algebra: vector/vector, vector/scalar, reduction sum, sparse-matrix/vector

Mini-app 1: Poisson’s equation in 2D with finite differences
Three different CG, Jacobi or SSOR variants as solvers

Mini-app 2: Poisson’s equation in 3D with finite differences
Similar variants to (1)

Mini-app 3: Poisson’s equation in 2D with finite elements
For unstructured/less structured domains, similar variants to (1), possibly sparse data
structures

Mini-app 4: Linear convection-diffusion equation in 2D with finite elements
(Flexible) Generalized Minimum Residual Method ((F)GMRES) instead of CG

Challenge: efficient scalar product of two vectors

12

5. ENERGY MEASUREMENT
Score-P for time measurement

Wall-plug power: Zimmer Electronic
Systems (ZES) LMG450

High temporal resolution, single device

Component power: RAPL (Intel CPUs &
mem) & NVML (NVIDIA GPUs)

Low temporal resolution, assumed to be
correct, ubiquitous

Component power (optional): PowerMon
High temporal resolution, integration
complexity

13D. Bedard, M. Y. Lim, R. Fowler and A. Porterfield, "PowerMon: Fine-grained and integrated power monitoring for
commodity computer systems," Proceedings of the IEEE SoutheastCon 2010, doi: 10.1109/SECON.2010.5453824

SUMMARY
Mekong simplifies multi-GPU programming using polyhedral compilation techniques

Automated creation of communication tasks

Compile stack, concept and apps defined

Initial results very promising (overhead, scalability)

Next: automated tool stack for fixed partitioning, partitioning decision, overlap by
sub-partitioning & scheduling, energy implications

Acknowledgements
Support by polyhedral compilation community: Johannes Doerfert & Sebastian Hack (discussion &
compile pass), Tobias Grosser (associated member), …

Support by NVIDIA Germany (associated member) & NVIDIA Research (gifts, grants)

BMBF funding (2017-2020)

Google Faculty Research Award (2014)

14
Alexander Matz, Holger Fröning, GPU Mekong: Simplified Multi-GPU Programming using Automated Partitioning, SC2017 Poster 

Alexander Matz, Holger Fröning, Automated Partitioning of Data-Parallel Kernels using Polyhedral Compilation, CGO’18 SRC

