

Toward space-time parallel simulations of phase-field models

December 4, 2017 | Robert Speck Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

BMBF-Project ParaPhase

High-order space-time parallel phase-field simulations

- interface problems can be modeled with phase-field equations
- wide range of applications, e.g. fracture propagation in ceramics, drying soil etc.
- some key phenomena only emerge when the domain is large and simulation time long enough
- significant computing cost \Rightarrow parallelism in space and time

Figure: Modeling of fracture propagation in dry soil

BMBF-Project ParaPhase

High-order space-time parallel phase-field simulations

- interface problems can be modeled with phase-field equations
- wide range of applications, e.g. fracture propagation in ceramics, drying soil etc.
- some key phenomena only emerge when the domain is large and simulation time long enough
- significant computing cost ⇒ parallelism in space and time

Figure: Modeling of fracture propagation in dry soil

The consortium

Uwe Glatzel Applications

Carsten Gräser Numerics

Oliver Sander Numerics

Universität Stuttgart

Marc-Andre Keip Applications

Robert Speck HPC

Jiri Kraus HPC

A very simple toy problem (in space)

Model problem:

 $-\Delta u = f$ on $\Omega := [0,1]^2$ u = g on $\partial \Omega$

Standard approach: multigrid

- very efficient (mostly)
- supported by a lot of theory
- parallelizable

Parallel multigrid with DUNE

DUNE = Distributed and Unified Numerics Environment

- modular C++ library for the solution of PDEs
- easy implementation of methods like Finite Elements
- slim interfaces, HPC-ready, easy to extend

Parallel multigrid with DUNE

- idea: let core modules handle the parallelization, algorithm should look (more or less) the same
- need: distributed data structures, reduction operations, communication
- allow overlapping and non-overlapping partitioning
- global index for each DoF

A less simple toy problem Complexity + = 1

Model problem:

$-\Delta u = f$	on $\Omega := [0,1]^2$
$u \leq u_+$	on Ω
u = g	on $\partial \Omega$

Left: toy problem with

$$u_{+}(x) = \begin{cases} 0.2 & ||x - x_{0}|| < r \\ \infty & \text{otherwise} \end{cases}$$

The TNNMG algorithm

Pre-smoothing: projected Gauss-Seidel

- Linear multigrid step for reduced problem
- Project on K_{alg}
- Line search to ensure monotonicity

The TNNMG algorithm

- Pre-smoothing: projected Gauss-Seidel
- Linear multigrid step for reduced problem
- Project on K_{alg}
- Line search to ensure monotonicity

Member of the Helr

The TNNMG algorithm

- Pre-smoothing: projected Gauss-Seidel
- Linear multigrid step for reduced problem
- Project on K_{alg}
- Line search to ensure monotonicity

The TNNMG algorithm

- Pre-smoothing: projected Gauss-Seidel
- Linear multigrid step for reduced problem
- Project on K_{alg}
- Line search to ensure monotonicity

Application: Notched domain under tension

A Boundary Value Problem

- Single-edge-notched domain under tensile loading
- Only upper half of the specimen is simulated (symmetry)
- Deformation by a linear increasing non-homogeneous Dirichlet boundary condition at the top

Application: Notched domain under tension

TNNMG vs. standard operator splitting

Adding time

 $\textbf{Complexity} \ + = 1$

What if our problems are time-dependent?

- example: Allen-Cahn or Cahn-Hilliard equations: diffuse interface model for phase transition and separation phenomena
- TNNMG allows semi- or fully implicit time-stepping with provable convergence
- parallel TNNMG = parallelization in space for time-dependent phase-field problems

Adding time

 $\textbf{Complexity} \ + = 1$

What if our problems are time-dependent?

- example: Allen-Cahn or Cahn-Hilliard equations: diffuse interface model for phase transition and separation phenomena
- TNNMG allows semi- or fully implicit time-stepping with provable convergence
- parallel TNNMG = parallelization in space for time-dependent phase-field problems

Are we done, then?

- Spatial parallelization reduces runtime per time-step
- Strong scaling saturates eventually because of communication
- Costs for more time-steps are not mitigated

- Spatial parallelization reduces runtime per time-step
- Strong scaling saturates eventually because of communication
- Costs for more time-steps are not mitigated

- Spatial parallelization reduces runtime per time-step
- Strong scaling saturates eventually because of communication
- Costs for more time-steps are not mitigated

- Spatial parallelization reduces runtime per time-step
- Strong scaling saturates eventually because of communication
- Costs for more time-steps are not mitigated

- Spatial parallelization reduces runtime per time-step
- Strong scaling saturates eventually because of communication
- Costs for more time-steps are not mitigated
- \rightarrow Can we compute multiple time-steps simultaneously?

Parallel-in-Time ("PinT") approaches

"50 years of parallel-in-time integration", M. Gander (2015)

- Interpolation-based approach (Nievergelt 1964)
- Predictor-corrector approach (Miranker, Liniger 1967)
- Parabolic or time multi-grid (Hackbusch 1984) and (Horton 1992)
- Multiple shooting in time (Kiehl 1994)
- Parallel Runge-Kutta methods (e.g. Butcher 1997) and extrapolation (Richardson 1910)
- Parareal (Lions, Maday, Turinici 2001)
- PITA (Farhat, Chandesris 2003)
- Guided Simulations (Srinavasan, Chandra 2005)
- RIDC (Christlieb, Macdonald, Ong 2010)
- PFASST (Emmett, Minion 2012)
- MGRIT (Falgout et al 2014)

Parallel-in-Time ("PinT") approaches

"50 years of parallel-in-time integration", M. Gander (2015)

- Interpolation-based approach (Nievergelt 1964)
- Predictor-corrector approach (Miranker, Liniger 1967)
- Parabolic or time multi-grid (Hackbusch 1984) and (Horton 1992)
- Multiple shooting in time (Kiehl 1994)
- Parallel Runge-Kutta methods (e.g. Butcher 1997) and extrapolation (Richardson 1910)
- Parareal (Lions, Maday, Turinici 2001)
- PITA (Farhat, Chandesris 2003)
- Guided Simulations (Srinavasan, Chandra 2005)
- RIDC (Christlieb, Macdonald, Ong 2010)
- PFASST (Emmett, Minion 2012)
- MGRIT (Falgout et al 2014)

A quick algebraic introduction to PFASST Basic building block: spectral deferred corrections (SDC)

Consider the Picard form of an initial value problem on $[T_n, T_{n+1}]$

$$u(t) = u_0 + \int_{T_n}^t f(u(s)) ds,$$

discretized using spectral quadrature rules with nodes t_m :

$$u_m = u_0 + \Delta t Q F(u) \approx u_0 + \int_{T_l}^{t_m} f(u(s)) ds,$$

then SDC methods can be seen as (approximative) Gauss-Seidel iteration to solve this collocation problem for all u_m .

A quick algebraic introduction to PFASST Basic building block: spectral deferred corrections (SDC)

Consider the Picard form of an initial value problem on $[T_n, T_{n+1}]$

$$u(t) = u_0 + \int_{T_n}^t f(u(s)) ds,$$

discretized using spectral quadrature rules with nodes t_m :

 $(I - \Delta t Q F)(\vec{u}) = \vec{u}_0$

then SDC methods can be seen as (approximative) Gauss-Seidel iteration to solve this collocation problem for all u_m .

A quick algebraic introduction to PFASST Basic building block: spectral deferred corrections (SDC)

Consider the Picard form of an initial value problem on $[T_n, T_{n+1}]$

$$u(t) = u_0 + \int_{T_n}^t f(u(s)) ds,$$

discretized using spectral quadrature rules with nodes t_m :

 $(I - \Delta t Q F)(\vec{u}) = \vec{u}_0$

then SDC methods can be seen as (approximative) Gauss-Seidel iteration to solve this collocation problem for all u_m .

 \Rightarrow Use this for block smoothing in space-time multigrid = PFASST

A quick algebraic introduction to PFASST

Parallel Full Approximation Scheme in Space and Time

We now glue *L* time-steps together, using *N* to transfer information from step *I* to step I + 1. We get:

$$\begin{pmatrix} I - \Delta t QF \\ -N & I - \Delta t QF \\ \vdots \\ \ddots & \ddots \\ -N & I - \Delta t QF \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vdots \\ \vec{u}_L \end{pmatrix} = \begin{pmatrix} \vec{u}_0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

PFASST:

- use (linear/FAS) multigrid to solve this system iteratively
- fine-level smoother: parallel block Jacobi with SDC in the blocks
- coarse-level: serial block Gauß-Seidel with SDC in the blocks

December 4, 2017

Examples: vortex particles and space-time multigrid

- vortex particles with Barnes-Hut tree code in space
- reduced force calculation on coarse level
- \rightarrow 7x additional speedup

- 3D heat equation with multigrid solver in space
- coarsening via reduction of grid points and discretization order
- \rightarrow 4x improved speedup

And phase-field problems?

Done

•	PFASST in time and finite elements in space	Ø
÷	dune-PFASST: a DUNE module for parallel-in-time integration	Ø
•	PFASST for reaction diffusion problems, e.g. Allen-Cahn	Ø
•	coupling of PFASST in time with (serial) TNNMG in space	Ø
To-do		
•	coupling of PFASST with space-parallel solver	
•	non-smooth problems	
÷	adaptivity in space and time	

Three takeaways

Parallel TNNMG method provides reliable and efficient solver for phase-field problems

Parallel-in-Time integration (PinT) can help to extend prevailing scaling limits


```
images/lego-pile.jpg
```

Space-time parallelization within **DUNE** leaves us with a ton of things to play with

December 4, 2017

Robert Speck

The PinT Community

To learn more about PinT check out the website

www.parallelintime.org

and/or join one of the PinT Workshops, e.g.

7th Workshop on Parallel-in-Time Integration

- May 2-4, 2018
- Roscoff, France
- by Yvon Maday et al.

Also, there is a mailing list, join by writing to

parallelintime+subscribe@googlegroups.com

Toward space-time parallel simulations of phase-field models

December 4, 2017 | Robert Speck Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH