Components for practical performance engineering in a computing center environment: The ProPE project

Jan Eitzinger
7. HPC-Status-Konferenz der Gauß-Allianz
Overview

Call:
Performance Engineering für wissenschaftliche Software

Partners:

Duration:
03/2017 – 02/2020

Coordination: Prof. G. Wellein (RRZE)
Current state

- HPC competence in German HPC centers distributed across country
- Gauss-Allianz is an initiative to integrate and organize TIER 2/3 HPC landscape in Germany
- Multiple local efforts and island projects: bwHPC, KONWIHR, HKHLR, HLRN …

Our contribution

- Similar targets as sketched in GA Strategiepapier, but focus on Performance-Engineering sub-topic

Integrate with and built on already existing efforts and further foster collaboration among German Tier 2/3 centers with respect to PE.
Major Building Blocks

- **Dissemination** – Increase publicity of project and raise general awareness for performance issues

- **Documentation** – Build a central web offering, create content and provide resources to maintain it

- **Structured PE-Process** – Systematic bottleneck centric performance analysis and optimization process
Major Building Blocks cont.

- **PE Support Infrastructure** – Process blueprint for nation-wide aligned support effort

- **Application Monitoring and Analysis** – Automatic profiling and bottleneck analysis for all applications running on a HPC-System

- **HPC Curriculum** – Coordinated nation-wide Workshop and Tutorial program
WP1 PE Process: Initial Experiences

• Application Performance Monitoring in place:
 • Resource allocation issues (# processes, memory, load balance and affinity)
 • File IO issues on parallel file system
 • Other user issues (batch script, MPI)

• Multiple meetings with users, but no PE code optimization project so far from the production users

• **BUT**: Many requests from outside for collaboration on PE topics in a research context
WP1 PE Process: Current activities

- Author whitepapers on **ECM Performance Model** and **Pattern-based PE Process**

- Apply PE process on Proxy Apps:
 - HPCG (almost done)
 - Mini-MD (Mantevo)
 - SPEC OMP 2012 botsalg and smithwa

- Integrate common community codes into RRZE HPC-Bench for automated benchmarking and performance analysis
WP2 - Process management

Creation of a multi-tier distributed support structure

- Establish a service structure for a performance engineering process
- Formulate terms and conditions of a distributed support structure
- Describe a support infrastructure allowing to transfer requests between sites based on a defined sequence of actions for supporters at three support levels.
Objectives
- Establish an automatic rating of the performance footprint of applications running on a production system

Current State
- Identification of suitable performance metrics
 - CPI, FLOP/s, Main Memory Bandwidth, I/O, Network
- Collection of job-specific performance metrics without instrumenting individual applications
 - Diamond
- Live (and post-mortem) visualization of performance data
 - Grafana

Next Steps
- Analysis of performance footprints to automatically detect performance issues
WP3 – Performance Monitoring and Analysis

Collectors	Performance Data
Likwid | - FLOP/s, CPI
- Memory bandwidth
Lustre | - Read/write bytes/requests
- Read/write calls for individual block sizes
- Metadata
Infiniband | - Xmit, Recv
Main Memory | - total/free/available/usage

Batch System	Job Data
SLURM | - Start and end time
- All SLURM environment variables that are available in prolog and epilog
e.g. SLURM_JOB_ID
SLURM_JOB_USER

Next steps!
WP3 – Performance Monitoring and Analysis

Job Status Table View → Grafana

<table>
<thead>
<tr>
<th>JOB ID</th>
<th>USER</th>
<th>START</th>
<th>END</th>
<th>STATUS</th>
<th>NUM_NODES</th>
<th>NODELIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>112752591</td>
<td>dieteric</td>
<td>07/09/2017 08:53</td>
<td>07/09/2017 08:58</td>
<td>completed</td>
<td>2</td>
<td>taurusi[3179-3180]</td>
</tr>
<tr>
<td>11274061</td>
<td>rotscher</td>
<td>07/09/2017 06:55</td>
<td>07/09/2017 06:56</td>
<td>completed</td>
<td>1</td>
<td>tauruskn1</td>
</tr>
<tr>
<td>11275055</td>
<td>rotscher</td>
<td>07/09/2017 06:48</td>
<td>07/09/2017 06:48</td>
<td>completed</td>
<td>1</td>
<td>tauruskn1</td>
</tr>
<tr>
<td>11275854</td>
<td>rotscher</td>
<td>07/09/2017 06:47</td>
<td>07/09/2017 06:47</td>
<td>completed</td>
<td>1</td>
<td>tauruskn1</td>
</tr>
</tbody>
</table>
WP3 Performance Monitoring RRZE

• LIKWID 4.3.0 will be released soon:
 • Intel Skylake support
 • AMD ZEN/EPYC support
 • perf_event backend

• Likwid Monitoring Stack released
https://github.com/RRZE-HPC/LMS

WP4/5 - Training / Knowledge transfer

Develop a coherent, nationwide HPC curriculum

- Examine and structure online course material in Germany (GA, GCS), EU (PRACE) and USA
- Target groups: user, developer, admin, HelpDesk, staff member, HPC experts, domain experts

HPC Knowledge Base

- Setup a central web platform for coherent site independent documentation of HPC related material.
- A MediaWiki has been set up to enable moderated user contributions and discussions
- Examine existing online material in Germany (GA, GCS), EU (PRACE) and USA
Conclusion and Outlook

- Work packages are **on track**
- Further establish **closer contact** to other projects of call

Outlook:

- We need to review the working plan with regard to user software optimization projects
- Eventually initiate own PE analysis effort on community codes with user provided input

- **Focus** on effective activities due to limited work force

Do you have a candidate for a PE project? Contact us!
Thank you for your attention!