

Industrialization of high-resolution numerical analysis of complex flow phenomena in hydraulic systems

Sebastian Boblest, Fabian Hempert, Malte Hoffmann, Philipp Offenhäuser, Filip Sadlo, Colin W. Glass, Claus-Dieter Munz, Thomas Ertl, and Uwe Iben

6. HPC-Status-Konferenz der Gauß-Allianz | Hamburg | 2016-11-29

Industrialization of high-resolution numerical analysis of complex flow phenomena in hydraulic systems

- Adaptation of high-order CFD method for simulations of real gases and cavitating flows
- High performance and scalability on modern supercomputers
- Development of postprocessing and visualization tools
- Application on industrially relevant cases
- OpenSource publication of code

Duration: 01.09.2013-31.12.2016

Method

Compressible Navier-Stokes-Equations

$$\frac{\partial U}{\partial t} + \vec{\nabla} \cdot \vec{F}^a(U) - \vec{\nabla} \cdot \vec{F}^d(U, \vec{\nabla}U) = 0, U = (\rho, \rho \, \vec{v}, \rho e)^T$$

- \vec{F}^a and \vec{F}^d : advective and diffusive fluxes
- For application to real gases and cavitating flows: equation of state to compute temperature, pressure and sound velocity

Method

- CFD-Solver based on Discontinuous Galerkin Method
- Polynomial approximation of solution within each cell
- Discontinuous across cell boundaries
- Riemann solver to resolve discontinuity at element interface

Discontinuous Galerkin CFD-Solver

- CFD-Solver based on Discontinuous Galerkin Method.
- Polynomial approximation of solution within each cell
- Discontinuous across cell boundaries
- Riemann solver to resolve discontinuity at element interface
- Very high parallel scaling due to mostly element local operators

Method

- Unstructured grid with higher-order hexahedrons
- $(N + 1)^3$ interpolation points per cell
- Transformation to reference element $[-1,1]^3$ for calculations

Real fluids: Equations of State

- Ideal gas law: $p = \rho RT$ and $e = c_v T$
- Real fluids: Complex Equations of State (EOS)
- Use data provided by Coolprop library

Ideal Gas Visualization Research Center University of Stuttgart

Real Fluid

Real fluids: Equations of State

- Evaluation of EOS with Coolprop prohibitively slow for simulation
- Efficient MPI-parallelized preevaluation of EOS to a table
- Quadtree based refinement structure

Quadtree structure for table refinement

Real fluids: Equations of State

 Evaluation of tabulated EOSs faster by about a factor 1000 compared to Coolprop

University of Stuttgart

Quadtree structure for table refinement

DG Method and Shock Capturing

- Polynomial DG solution can become unstable
 - Shock waves
 - Phase transitions
 - Underresolved simulations
- Detection of instabilities with various sensors
- Program switches to Finite-Volume Scheme in these regions
 - One FV cell per DG interpolation point

Shock Capturing and Load Balancing

Computational cost of DG cells and FV cells differs by about 50%

Jet Simulation. Top: Persson sensor value, bottom: FV cells.

Visualization Research Center University of Stuttgart

Dynamic Load Change

 $T_0 = 0.0 ms$ T₁=0.25ms $T_2 = 0.5 ms$ Density

Simulation domain (blue) with FV-Subcells (red)

- DG-FV distribution strongly time-dependent
- Load balancing must be dynamic

Visualization Research Center University of Stuttgart

Dynamic Load Balancing Strategy

- Elements are evenly distributed among processors along Hilbert-Curve
 - Effectively 1D
- Assign different weights to DG and FV cells and distribute weights evenly
- Cores with many FV cells get fewer cells altogether

S Visualization Research Center University of Stuttgart

Load-Dependent Domain Decomposition

- Reassignment of elements:
 - Shared memory model on node level
 - Each node permanently allocates memory for additional elements
 - All-to-all communication between nodes only of current DG-FV distribution
 - Each core can independently compute new element distribution
 - One-to-one inter-node communication to reassign elements
- Performance gain ~10%

Load-Dependent Domain Decomposition

Load distributions on 96 cores before and after load balancing

Element distribution on 96 cores after load balancing

NSOS Visualization Research Center University of Stuttgart

Dynamic Load balancing: Time-dependent element distribution

- Currently load balancing applied repeatedly after a fixed number of timesteps
- Method exploits Hilbert-Curve structure and the relatively small difference in computational cost of DG and FV cells

Use Case: Engine Gas Injection

Natural gas injector

Previously: Acoustic Simulation

Measured and simulated sound pressure levels

Real Gas Jet Simulation

- Real gas throttle flow with Methane
- Inlet pressure: 500 bar, varying outlet pressure
- Micro throttle with a diameter of
 D = 0.5 mm

Simulation mesh, high-resolution region in red.

Overview of simulation domain.

Real Gas Jet Simulation

Real gas properties of gaseous fluids need to be considered at high pressures

S Visualization Research Center University of Stuttgart

Real Gas Jet Simulation

Flow through throttle subsonic or supersonic, depending on pressure ratio $R_{\rm p} = p_{\rm in}/p_{\rm out}$

SINS Visualization Research Center University of Stuttgart

Influence of Grid Resolution

 Mixed DG-FV approach can accurately predict major structure of shock locations for all grid resolutions

Real Gas Jet Simulation: Mass Flow Analysis

- Accurate prediction of mass flow is essential to design of gas injectors
- Dynamic behavior of mass flow at beginning of simulation
 - Interesting because gas injection occurs at high frequencies
- For R_p > 2.5 maximum value virtually independent of R_p

Investigation of Single Bubble Collapse

Ellipsoidal gas bubble collapsing close to a surface

- Test case for behavior of solver in cavitating flows
- Investigation of pressure waves hitting nearby surfaces

Visualization Research Center University of Stuttgart

Investigation of Single Bubble Collapse

- Spatio-temporal depiction of pressure p(x, t) along line.
- Full time resolution, no timesteps omitted
- Efficient comparison of different simulations
 - Mesh resolution
 - Initial conditions
- Steep gradients at bubble boundary are challenging for tabular EOS

Use Case: Cavitation

- Evaporation of liquid because pressure drops below vapor pressure
- High pressure peaks if vapor areas collapse
- Industrially relevant due to large damage potential in technical devices

Cavitation

- Micro channel flow with water
 - Strong shocks due to caviation

Mixed DG-FV approach can resolve much finer scales than FV alone

Cavitation

Visualization Research Center University of Stuttgart

Conclusion

- Large portfolio of different fluid dynamic simulations
- Efficient usage of highly accurate real gas approximations
- Analysis of the difference between ideal and real gas approximation
 - Mass flow very dynamic for real gas
- Simulation of cavitation show promising results for high order multiphase flow

Thank you.

SPONSORED BY THE

Federal Ministry of Education and Research

DLR Project Management Agency

