AOOOO0A
0:0:.’0‘0‘0’.’0:0
2202055202020 - -
0 * e
aagsit University of Stuttgart
*, 0....
*ele

Germany

Industrialization of high-resolution
numerical analysis of complex flow
ohenomena in hydraulic systems

Sebastian Boblest, Fabian Hempert, Malte Hoffmann, Philipp Offenhauser, Filip Sadlo,
Colin W. Glass, Claus-Dieter Munz, Thomas Ertl, and Uwe Iben

6. HPC-Status-Konferenz der GauB-Allianz | Hamburg | 2016-11-29

[ ]
m S m Visualization Research Center
University of Stuttgart



Industrialization of high-resolution
numerical analysis of complex flow
phenomena in hydraulic systems

= Adaptation of high-order CFD method for simulations of real gases and
cavitating flows

= High performance and scalability on modern supercomputers
= Development of postprocessing and visualization tools

= Application on industrially relevant cases

= OpenSource publication of code

Duration: 01.09.2013-31.12.2016
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Methoo

= Compressible Navier-Stokes-Equations
L7 FeW) -7 FYU,TU) = 0,U = (p,p B, pe)

= F%and F4: advective and diffusive fluxes

= For application to real gases and cavitating flows: equation of
state to compute temperature, pressure and sound velocity
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Method

= CFD-Solver based on
Discontinuous Galerkin Method

= Polynomial approximation of
solution within each cell

= Discontinuous across cell
boundaries

= Riemann solver to resolve )
discontinuity at element interface Z
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Discontinuous Galerkin CFD-Solver

= CFD-Solver based on ' N= 9, #elems= 12288
. . . M= N= 7, #el = 12288
Discontinuous Galerkin Method. "°F — N & selome: 12288

. . . | ——+—— N= 5, #felems= 12288
= Polynomial approximation of | ———— N= 4, #elems= 12288
. T | —=—— N= 3, #elems= 12288
solution within each cell | ideal
. . o
= Discontinuous across cell =i
boundaries -

= Riemann solver to resolve
discontinuity at element interface

= Very high parallel scaling due to
mostly element local operators
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Method

= Unstructured grid with higher-order hexahedrons

= (N + 1)3 interpolation points per cell
= Transformation to reference element [-1,1]° for calculations
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Real fluids: Equations of State

= Ideal gas law: p = pRT and e = ¢,T
= Real fluids: Complex Equations of State (EOS)
= Use data provided by Coolprop library

Ideal Gas Real Fluid
MS m Visualization Research Center
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Real fluids: Equations of State

= Evaluation of EOS with Coolprop
prohibitively slow for simulation

= Efficient MPI-parallelized pre-
evaluation of EOS to a table

= Quadtree based refinement structure

Quadtree structure for
table refinement
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Real fluids: Equations of State

= Evaluation of tabulated EOSs faster by
about a factor 1000 compared to
Coolprop

Quadtree structure for
table refinement

P (p,e) - T table for water. T color
coded.
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DG Method and Shock Capturing

= Polynomial DG solution can become unstable
= Shock waves
= Phase transitions
= Underresolved simulations
= Detection of instabilities with various sensors
= Program switches to Finite-Volume Scheme in these regions
= One FV cell per DG interpolation point
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Shock Capturing and Load Balancing

Computational cost of DG cells and FV cells differs by about 50%

Jet Simulation. Top: Persson sensor value, bottom: FV cells.
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Dynamic Load Change

T,=0.0ms T,=0.25ms T,=0.5ms

Simulation domain (blue) with FV-Subcells (red)

= DG-FV distribution strongly time-dependent
= Load balancing must be dynamic
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Dynamic Load Balancing Strategy

= Elements are evenly distributed among processors along Hilbert-Curve
= Effectively 1D
= Assign different weights to DG and FV cells and distribute weights evenly

= Cores with many FV cells get fewer cells altogether
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Load-Dependent Domain Decomposition

= Reassignment of elements:

Shared memory model on node level

Each node permanently allocates memory for additional
elements

All-to-all communication between nodes only of current DG-FV
distribution

Each core can independently compute new element distribution
One-to-one inter-node communication to reassign elements

= Performance gain ~10%

nsn.
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Load-Dependent Domain Decomposition

load / average load
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Dynamic Load balancing:
Time-dependent element distribution

MPI-Rank MPI-Rank
195 v 495
496 N 496
497 'y 497

498} s o 498}
9 2 |

sooff] sl
so1 ] Sul |
502 l 502

503 503
504 504
505 5056

T,=0.0ms T,=0.25ms T,=0.5ms

= Currently load balancing applied repeatedly after a fixed number of
timesteps

= Method exploits Hilbert-Curve structure and the relatively small difference
in computational cost of DG and FV cells
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Use Case: Engine Gas Injection

nswn

Natural gas injector
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Previously: Acoustic Simulation
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Real Gas Jet Simulation

= Real gas throttle flow with Methane | -
= Inlet pressure: 500 bar, varying outlet —

pressure
= Micro throttle with a diameter of

D =05mm

Inlet

Overview of simulation domain.

Simulation mesh, high-resolution region in red.

L]
m S m " Visualization Research Center 18
University of Stuttgart



Real Gas Jet Simulation

= Real gas properties of gaseous fluids need to be considered at high

pressures
Air — Ar --- CO

CH, —— CO, Xe - -
3 ! ! y
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‘ pressure
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p [MPa)

Compressibility factor Z = p/(pRT) as a
function of pressure for different gases.
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Real Gas Jet Simulation

Mach
0 | |

£

5] =
= o
g =
: :

= S
o

+—

(a) R, = 1.25
O Mach 2

=

15| =
= e
R =
: :

= o
o

+

(b) R, = 5.00

[ ]
m S m Visualization Research Center
University of Stuttgart

Flow through throttle subsonic or
supersonic, depending on pressure

ratio Rp = pin/pout
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Influence of Grid Resolution

= Mixed DG-FV approach can accurately predict major structure of shock
locations for all grid resolutions
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Real Gas Jet Simulation: Mass Flow

Analysis

= Accurate prediction of mass flow is essential to design of gas injectors
= Dynamic behavior of mass flow at beginning of simulation

= Interesting because gas injection
occurs at high frequencies

= For R,> 2.5 maximum value
virtually independent of R,
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Investigation of Single Bubble Collapse

Ellipsoidal gas bubble collapsing close to a surface

= Test case for behavior of solver in cavitating flows
= Investigation of pressure waves hitting nearby surfaces
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Investigation of Single Bubble Collapse

= Spatio-temporal depiction
of pressure p(x,t) along
line.

= Full time resolution, no
timesteps omitted

= Efficient comparison of
different simulations
= Mesh resolution
= Initial conditions
= Steep gradients at bubble

boundary are challenging
for tabular EOS

Surface
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Use Case: Cavitation

Shear layer
cavitation

Cavitation areas (gas) are dark.
Laminar (liquid) parts are grey.

= Evaporation of liquid because pressure drops below vapor pressure
= High pressure peaks if vapor areas collapse
= Industrially relevant due to large damage potential in technical devices
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Cavitation

Micro channel flow with water
= Strong shocks due to caviation

DG (5th Order)

+

FV (2nd Order)

Only
FV (2nd Order)

Mixed DG-FV approach can resolve much finer scales than FV alone
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Cavitation
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Conclusion

= Large portfolio of different fluid dynamic simulations
= Efficient usage of highly accurate real gas approximations

= Analysis of the difference between ideal and real gas approximation
= Mass flow very dynamic for real gas

= Simulation of cavitation show promising results for high order multi-
phase flow
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