PDExa
Optimierte Softwaremethoden für die Lösung partieller Differentialgleichungen auf Exascale-Supercomputern

Beschreibung

Motivation

High-Performance Computing (HPC) gehört heute in vielen wissenschaftlichen Disziplinen zu den grundlegenden Forschungsmethoden. Höchstleistungsrechner erreichen seit diesem Jahr die Exaflop-Leistungsklasse (mindestens 1018 Operationen pro Sekunde). Damit Anwendungen die Leistung von Exascale-Systemen effizient ausnutzen können, muss die Skalierbarkeit auf sehr großen und heterogenen Systemen verbessert werden. Eine Vielzahl von Komponenten sind für moderne Höchstleistungsrechner notwendig: vom Prozessor über Datenspeicher und Dateisystem bis zu Software und Algorithmen. Für alle diese Komponenten sind auch neue Technologien und Anpassungen an bestimmte Anwendungen und Schnittstellen notwendig.

Ziele und Vorgehen

Ziel des Vorhabens ist die Entwicklung von skalierbaren Software-Methoden und -Technologien für die effiziente Lösung von partiellen Differentialgleichungen mit Fokus auf Anwendungen der numerischen Strömungsmechanik (CFD). Durch spezielle Lösungen, wie matrixfreie Implementierungen, können die Berechnungen schneller und wesentlich genauer durchgeführt werden. Dazu sollen hardwarespezifische Optimierungen mit modernen numerischen Methoden kombiniert und in verfügbarer und einfach nutzbarer Software umgesetzt werden. Im Vorhaben sollen die Algorithmen in Simulationen der Plasmaphysik angewandt und getestet werden sowie als Open-Source-Softwarebauseine zur Verfügung gestellt werden.

Innovationen und Perspektiven

Die zu entwickelnden frei verfügbaren Methoden und Bibliotheken sind auf eine Vielzahl an weiteren Anwendungsbereichen übertragbar und tragen zu besseren Simulationen und der Energieeinsparung bei. Die angestrebten Lösungen ermöglichen erstmalig die Erforschung von speziellen Randeffekten in Fusionsreaktoren und tragen so auch zur Fusionsforschung bei.